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Fig. 1. 3D sketches created in Virtual Reality (VR) or with sketch-based modeling systems often depict piecewise-smooth surfaces (a), but lack proper
inter-stroke connectivity to detect the individual surface patches, as illustrated in the insets where pen strokes do not intersect precisely, and where detail
strokes lie on the imaginary surface without being connected to other strokes. State-of-the-art surfacing algorithms only produce smooth surfaces from
such sparse and unstructured 3D data (b). Our algorithm segments such an initial smooth surface into regions aligned with the pen strokes to produce a
piecewise-smooth surface that better captures the intended shape. ©James Robbins.

We propose a method to transform unstructured 3D sketches into piecewise
smooth surfaces that preserve sketched geometric features. Immersive 3D
drawing and sketch-based 3D modeling applications increasingly produce
imperfect and unstructured collections of 3D strokes as design output. These
3D sketches are readily perceived as piecewise smooth surfaces by viewers,
but are poorly handled by existing 3D surface techniques tailored to well-
connected curve networks or sparse point sets. Our algorithm is aligned with
human tendency to imagine the strokes as a small set of simple smooth sur-
faces joined along stroke boundaries. Starting with an initial proxy surface,
we iteratively segment the surface into smooth patches joined sharply along
some strokes, and optimize these patches to fit surrounding strokes. Our
evaluation is fourfold: we demonstrate the impact of various algorithmic
parameters, we evaluate our method on synthetic sketches with known
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ground truth surfaces, we compare to prior art, and we show compelling
results on more than 50 designs from a diverse set of 3D sketch sources.

CCS Concepts: • Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: sketch-based modeling, surfacing, VR
sketching
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1 INTRODUCTION
Drawing, be it on cave walls, paper, or touch screens, has been a
quintessential tool of visual communication for millennia. Beyond
the established importance of drawing on surfaces, sketching mid-
air in AR/VR environments, like waving a magic wand, provides
artists the unprecedented freedom to draw directly in immersive 3D
[Adobe 2020; Google 2016; GravitySketch 2017; Smoothstep 2021].
Such unstructured 3D curve sketches, while beautiful to behold and
effectively perceived by viewers, are non-trivial to transform into 3D
surface models for further design communication and processing.
We present, to our knowledge, the first approach to transform such
unstructured sketches into piece-wise smooth 3D surface models
that preserve salient sketched features (Fig. 1).
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Our method is motivated by several key characteristics of 3D
sketches, highlighted as insets in Fig. 1(a).

— Artists often depict piecewise-smooth surfaces by strategically
placing strokes at sharp surface discontinuities, consistent with
traditional sketching practices of representing an object through
its feature curves – ridges and valleys [Cole et al. 2008; Gryadit-
skaya et al. 2019].

— While the main patches that form the envisioned surface are
often delimited by strokes, other strokes lie within individual
patches to depict sub-parts and decorative details.

— 3D sketches are often imprecise, exhibiting over-sketching or
gaps and missing intersections between strokes.

While the relative importance of these characteristics in 3D sketches
may vary by artist and the drawing tool used, they underlie both
AR/VR sketching and traditional sketch-based 3D modeling systems
[Bae et al. 2008; Kim and Bae 2016; Xu et al. 2014], making our
approach well-suited in general to surfacing any sketches, that are
provided as an unstructured collection of 3D curves.

Existing surfacing methods only partly account for these charac-
teristics. Point cloud surfacing algorithms target densely sampled
surfaces and fail on sparse stroke clouds [Hoppe et al. 1992; Kazhdan
et al. 2006] or cannot capture sharp features of the sketch (Fig. 1b).

Methods dedicated to 3D drawings focus on well-connected curve
networks [Abbasinejad et al. 2011; Bessmeltsev et al. 2012; Orbay
and Kara 2012; Sadri and Singh 2014; Zhuang et al. 2013], where
surface patches are bounded by closed cycles of curve segments.
Due to their strong requirements on curve network topology, such
methods cannot process the imprecise, unstructured stroke clouds
we target.

To reconstruct piecewise-smooth surfaces from inaccurate 3D
sketches, we must jointly determine which parts of the sketch cor-
respond to different surface patches, and recover the geometry of
these patches away from the strokes.
A first challenge is to determine where surface patches should

lie in the empty space between the strokes. This task is particularly
ambiguous for sparse sketches, since the inter-stroke Euclidean
proximity does not necessarily denote geodesic proximity on the
envisioned surface. We reduce this ambiguity by complementing
the input sketch with a low-fidelity proxy surface, which we obtain
by applying the smooth point cloud surfacing method of Huang et
al. [2019], or in cases where this automatic method fails, by asking
users to create a simple proxy with low-poly modeling tools (see
Section 5). The proxy surface provides us with a manifold domain on
which we project nearby strokes, such that our problem of locating
the surface patches amounts to segmenting the proxy into regions
roughly bounded by strokes.
Our second challenge is to shape each proxy region into a sur-

face patch that represents well the geometry of the strokes that
project in that region, which is especially difficult when the strokes
themselves are sparse and approximate. We address this challenge
by representing each patch as an implicit surface defined as the
zero level-set of a low degree polynomial – which we refer to as
an implicit polynomial surface. Such implicit surfaces offer multiple
benefits in our context. They have infinite support, allowing the
surface regions they capture to grow or shrink arbitrarily as the

algorithm progresses, and they are fast to evaluate and fit to stroke
points.

Equipped with the concepts of a proxy surface and implicit poly-
nomial surface patches, we cast finding the piecewise-smooth sur-
face that best represents the sketch as a multi-model fitting problem
[Isack and Boykov 2012]. In a nutshell, our algorithm alternates
between refining a segmentation of the proxy into regions well
represented by a set of implicit surfaces, and improving the implicit
surfaces by fitting them over the strokes within each region. After
convergence, we generate the final 3D triangle mesh by projecting
the proxy surface onto the zero-level sets of the implicit polynomial
surfaces, effectively recovering sharp features at the intersections
between patches.

While our method automatically produces piecewise-smooth sur-
faces aligned with the input strokes, it also supports user indications
to further improve the quality of the surface; for instance, to force
the creation or removal of surface discontinuities. We also rely on
user indications to discard strokes that are not supported by our
approach, notably internal strokes that lie inside the outermost
depicted surface, small disconnected parts, and so-called skeletal
strokes that depict thin cylindrical features (see Fig. 15).

In summary, we present the first surfacingmethod for 3D sketches
that produces piecewise-smooth meshes while being oblivious to
stroke connectivity. We evaluate our method by surfacing more
than 50 sketches created with a variety of VR and sketch-based
modeling systems, by comparing to surfacing methods tailored
to well-connected curve networks, by measuring deviation from
ground truth surfaces from which synthetic sketches were gener-
ated, and by studying the impact of the main components of our
algorithm. Finally, we provide an interactive visualization of all our
results as supplemental materials for close inspection.

2 RELATED WORK
Surfacing curve networks. The problem of surfacing 3D sketches

emerged with the advent of practical user interfaces, algorithms
and devices to create such sketches. Early 2D interfaces deduce the
depth of the strokes from the intersections they form with other
strokes [Schmidt et al. 2009; Xu et al. 2014] or with sketching planes
[Bae et al. 2008], effectively producing well-connected curve net-
works by construction. As a consequence, a number of surfacing
algorithms strongly rely on the connectivity of the curve network
to identify closed cycles delimiting surface patches [Abbasinejad
et al. 2011; Orbay and Kara 2012; Sadri and Singh 2014; Zhuang
et al. 2013]. Each such patch can then be surfaced by propagating
geometric information from the boundary curves [Bessmeltsev et al.
2012; Pan et al. 2015; Stanko et al. 2016]. Curve connectivity infor-
mation provides strong geometric hints, since surface normals can
be estimated at each intersection – as done by Pan et al. [2015] to
detect sharp features and determine which curves are flow lines.
However, the reliance on accurate curve network topology prevents
these methods to work on raw, unstructured stroke clouds as typically
produced via freehand VR sketching [Google 2016; GravitySketch
2017; Smoothstep 2021].

Recent studies have shown that precise sketching in VR is more
challenging than in 2D due to the lack of a supporting surface for the
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(a) 3D sketch (b) Proxy [Huang et al. 2019] (c) Segmentation & surface fitting (d) Piecewise-smooth result

Fig. 2. Overview of our method.We take as input a 3D sketch (a) and a proxy mesh (b), for example obtained with VIPSS [Huang et al. 2019]. We iteratively
improve a segmentation of the proxy mesh (c, left) and parameters of a set of surface models (c, right) to obtain a decomposition of the surface into smooth
patches that approximate the input strokes well. We represent each surface model as the zero level set of an implicit polynomial, which offers infinite spatial
support and a good balance between expressivity and complexity. Finally, we project the vertices of the proxy mesh onto the surface models to recover the
final piecewise-smooth surface with sharp features (d). When appropriate, we trim the proxy mesh to match user-annotated boundary strokes (a, blue), and
we leverage sketch symmetry by surfacing only half of the sketch and mirroring the result.

hand and the need for finer motor control to position strokes in 3D
[Arora et al. 2017; Machuca et al. 2019]. Automatic snapping can help
correct for inaccuracy [Machuca et al. 2018; Yu et al. 2021a,b], but
such assistance can be detrimental to user creativity, as mentioned
by users of the recent CASSIE system [Yu et al. 2021a] who criticized
being forced to think of their designs in terms of curve networks.
Processing 3D sketches to form well-connected curve networks

is both challenging and often undesirable. First, many strokes in
3D sketches are not meant to connect to others – see the details on
author1_bulbasaur (Fig. 16), and on the car (Fig. 1 insets). Simply ig-
noring such disconnected strokes can alter the original design intent
(Fig. 12, red strokes). Secondly, 3D sketches may exhibit oversketch-
ing and imprecisions (vr_controller Fig. 16), which make forming
clean curve networks from 3D strokes a challenging problem, akin
to 2D vectorization. We instead propose an approach that is oblivi-
ous to stroke connectivity, achieving high robustness to inaccuracy
and to detail strokes that lie on the envisioned surface but are not
connected to other strokes.

Our work also differs from interactive systems designed to model
3D surfaces by sketching in 2D [Dvorožňák et al. 2018; Li et al.
2017; Nealen et al. 2007]. Users of these systems draw in dedicated
interfaces and provide annotations of surface discontinuities. In
contrast, we take as input 3D sketches created with a variety of tools,
and we propose a multi-model fitting algorithm to automatically
locate sharp features where and only where they are needed.

Surfacing point clouds. The 3D sketches we consider can easily
be converted to point clouds by sampling points along each stroke,
which would allow leveraging the wealth of methods developed for
surfacing such unstructured 3D data [Berger et al. 2017]. Unfortu-
nately, most existing methods have been designed to process dense
point clouds acquired using 3D scanning technology [Hoppe et al.
1992; Kazhdan et al. 2006], and are doomed to fail on 3D sketches
that only provide a very sparse, non-uniform sampling of the en-
visioned surface. While some methods are robust to missing data,
they only fix holes that are relatively small compared to the scale of
the overall surface [Hornung and Kobbelt 2006], or guide surface
completion by fitting geometric primitives on otherwise dense parts
of the point cloud [Schnabel et al. 2009; Tagliasacchi et al. 2009].
In contrast, 3D sketches are dominated by large holes, and only
contain 3D information along thin, 1-dimensional subspaces.

The recent VIPSS algorithm of Huang et al. [2019] achieves im-
pressive resilience to sparsity and non-uniformity of the point cloud,
and has even been demonstrated on unstructured stroke clouds simi-
lar to our target sketches. But this robustness is obtained thanks to a
global smoothness energy that misses sharp surface discontinuities.
Nevertheless, we use VIPSS to initialize our method, and focus on
the problem of segmenting its result into individual patches forming
a more faithful reconstruction of the input sketch.

Our approach relates to algorithms that recover piecewise-smooth
surfaces from point clouds by identifying locally-smooth patches
and by detecting sharp discontinuities as the intersections of these
patches [Fleishman et al. 2005; Huang et al. 2013; Jenke et al. 2008].
However, these methods rely on a dense sampling of the surface
away from sharp features, while 3D sketches are mostly empty in
such regions and are only densely sampled along feature curves.

We also take inspiration frommethods that reconstruct or approx-
imate 3D shapes as a collection of parametric geometric primitives,
such as planes [Cohen-Steiner et al. 2004; Monszpart et al. 2015;
Pham et al. 2016], cones, cylinders and spheres [Li et al. 2011; Wu
and Kobbelt 2005], generalized cylinders [Zhou et al. 2015], and
quadric surfaces [Yan et al. 2012]. Similarly to these methods, we
cast the discovery of representative surface patches as a multi-model
fitting problem. Our originality is to leverage specifics of 3D sketches
to guide this optimization, notably by encouraging large, uniform
patches bounded by the input strokes, and by representing free-form
surfaces as 4th-order implicit polynomial surfaces.

Note that the resulting segmentation is purely driven by geometry
and does not carry any semantic meaning other than when semantic
parts happen to be well-represented by different smooth patches –
eg, the hood of the car and the windshield (Fig. 1c).

Surfacing stroke clouds. Our work focuses on sparse 3D sketches,
which contrast with the dense VR paintings targeted by Rosales
et al. [2019] that are created by covering the surface with large,
overlapping ribbons that provide position and orientation samples
all over the surface [Google 2016; Rosales et al. 2021].

In the computer vision community, a few methods have been pro-
posed to reconstruct curve clouds by matching edges in a multi-view
stereo algorithm [Fabbri and Kimia 2010]. Usumezbas et al. [2017]
proposed a surfacing algorithm dedicated to such unstructured 3D
data, where candidate surface patches are lofted between pairs of

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.



1:4 • Yu et al.

curves. But this method largely relies on the availability of multiple
photographs of the shape to select valid candidate patches based on
occlusion reasoning.
Closest to our problem statement, Batuhan Arisoy et al. [2012]

surface sparse and imprecise 3D sketches by smoothly deforming
an initial low-fidelity surface of correct topology, using a discrete
guidance vector field that points towards the closest stroke point.
This approach produces globally smooth surfaces and requires user
intervention to specify strokes that should be inserted into the mesh
as sharp edge polylines (see Fig. 17 and 18 in their paper for a visual
comparison of their results on similar sketches to ours). In contrast,
our multi-model fitting formulation produces piecewise-smooth
surfaces automatically.

3 OVERVIEW
Fig. 2 illustrates the main steps of our method, which takes as input a
3D sketch, alongwith an approximate proxy surface obtainedwith an
automatic surfacing algorithm [Huang et al. 2019] or an existing low-
poly modeling tool (see the accompanying video for a demonstration
of this workflow). After projecting the sketch onto the proxy, our
goal is to segment the proxy into regions, each associated with a
smooth surface model, such that the resulting piecewise-smooth
surface satisfies the following desiderata.

— Reproducing stroke geometry. The surface models should
run close to the input strokes, both for strokes that depict sharp
surface discontinuities and for strokes that depict details within
smooth areas.

— Aligning patch boundaries with strokes. The boundary be-
tween neighboring regions should lie along strokes that depict
sharp surface discontinuities, yet not all strokes in the sketch
depict a discontinuity.

— Keeping the reconstruction simple. The surface should be
composed of a small number of smooth patches, rather than
many intricate patches that would overfit to inaccuracy in the
input strokes.

We formulate these competing requirements as energy terms
in an optimization. A first energy term measures the distance be-
tween each stroke and the surface model it is assigned to. A second
term measures the smoothness of the segmentation away from the
strokes, encouraging the transitions between models to occur along
strokes. This smoothness term also penalizes small, isolated regions,
which contributes to satisfy our third desiderata. Finally, a third
term measures the complexity of the reconstruction by counting
the degrees of freedom of the models used.

While each of our terms has an intuitive interpretation, their com-
bination yields a challenging optimization problem that combines
discrete variables (which surface model should be assigned to which
region of the proxy) and continuous variables (parameters of these
models). We tackle this challenge by expressing our problem within
PEARL, a general algorithm to solve multi-model fitting problems
[Isack and Boykov 2012]. In our context, the algorithm alternates
between optimizing the discrete variables describing the segmenta-
tion while keeping the model parameters fixed, and optimizing for
the continuous model parameters while keeping the segmentation
fixed (Fig. 2c).

After convergence, we obtain a segmented proxy, as well as a set
of surface models represented by implicit polynomial surfaces. The
last step of our method aims at converting this representation into a
triangle mesh suitable for downstream applications (Fig. 2d). Since
the proxy provides us with a mesh of correct topology relatively
close to the surfacemodels, we recover the final surface by projecting
this mesh onto the zero level-sets of the polynomials.

4 METHOD
We now formulate the main terms of our optimization problem,
before describing how we solve this problem by alternating seg-
mentation and fitting. In what follows, we use the terms points and
segments to refer to the stroke polylines, and the terms vertices and
edges to refer to the triangles of the proxy mesh.

4.1 Problem formulation
While our segmentation algorithm relies on the proxy mesh as a
computational domain, several of our energy terms are defined as
functions of the stroke points. To reason about stroke geometry on
the proxy domain, we project each stroke to its nearest location on
the proxy and associate it with nearby mesh elements. Specifically,
we detect intersections between the projected stroke segments and
triangle edges, and associate the corresponding stroke points with
the two vertices of the intersected edges. Thanks to this association,
our segmentation algorithm assigns one surface model per mesh ver-
tex, yet can fit several surfacemodels to a single stroke point – which
is critical for positioning boundaries of surface patches along strokes.

stroke

proxy

projection

Denoting P the set of all stroke points,
we denote P𝑣 ⊂ P the subset associ-
ated with a given mesh vertex 𝑣 ∈ V ,
which can contain zero or many stroke
points (see inset). This association is
built by a closest-point projection of
the strokes onto the proxy surface (see
Appendix A for more details).

Our goal is to assign each mesh vertex to a surface model 𝑓𝛼 ,
associated with the label 𝛼 ∈ L. We denote the corresponding vertex
labeling as 𝑙 : V → L. Furthermore, we denote as 𝜽𝛼 the vector of
real-valued parameters of the surface model 𝑓𝛼 . Our surface model
representation, detailed in Section 4.2, is the zero level-setZ (𝑓𝛼 )
of an implicit polynomial. Finally, we denote as Θ =

⊕
𝛼 ∈L 𝜽𝛼 the

concatenation of the parameter vectors 𝜽𝛼 for all 𝛼 ∈ L.
Given these definitions, we cast our problem as finding the label-

ing and the associated model parameters that minimize
𝐸L (𝑙,Θ) = 𝐸fidelity (𝑙,Θ)

+𝑤smoothness · 𝐸smoothness (𝑙)
+𝑤simplicity · 𝐸simplicity (𝑙),

(1)

where 𝐸fidelity, 𝐸smoothness, and 𝐸simplicity capture the three desider-
ata listed in Section 3. Note that the number of labels required for
a given sketch is also unknown, since we do not know how many
smooth patches are necessary to faithfully represent the 3D surface
a priori. We next describe each of the three energy terms.

Fidelity to input strokes. We seek a piecewise-smooth surface
that reproduces well the input stroke geometry. We measure this
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property by summing over all mesh vertices 𝑣 the distance between
their surface model Z

(
𝑓𝑙 (𝑣)

)
and each of their associated stroke

points p ∈ P𝑣 :

𝐸fidelity (𝑙,Θ) =
1

𝜖2𝑁𝑝

∑︁
𝑣∈V

∑︁
p∈P𝑣

dist
(
Z

(
𝑓𝑙 (𝑣)

)
, p

)2
, (2)

where the normalization term 𝑁𝑝 is the total number of stroke
points involved in the summation. We detail in Section 4.2 how to
compute dist (Z(𝑓 ), p)2 efficiently. The scale factor 𝜖 controls the
sensitivity of 𝐸fidelity to small deviations of the strokes from the
surface models. We experimentally set this parameter to 1% of the
input sketch’s bounding-box diagonal for all results presented in
the paper, but we show the impact of alternate values in Fig. 9.

Smoothness of the labeling. Our smoothness term seeks to con-
centrate changes of labels along strokes, such that sharp surface
discontinuities appear at these locations when transitioning from
one surface model to another. Inspired by classic work on edge-
aware image segmentation [Boykov and Jolly 2001], we encourage
neighboring vertices to share the same label, unless they are sep-
arated by a stroke. We achieve this goal by assigning a weight𝑤𝑒

to each edge 𝑒 ∈ E of the mesh, using a low weight 𝑤𝑒 = 1 if the
edge is crossed by a projected stroke segment, and a high weight
𝑤𝑒 = 100 otherwise. Here we assume that all edges have approxi-
mately the same length, see Appendix C for a scaling term in the
case of anisotropic meshes. We then define the smoothness energy:

𝐸smoothness (𝑙) =
1
𝑊

∑︁
{𝑢,𝑣 }∈E

𝑤𝑢𝑣 (1 − 𝛿 (𝑙 (𝑢), 𝑙 (𝑣))) , (3)

with 𝛿 being the Kronecker delta function, 𝛿 (𝑖, 𝑗) = 1 if 𝑖 = 𝑗 ,
𝛿 (𝑖, 𝑗) = 0 otherwise. The normalization term𝑊 is the sum of all
edge weights. We set𝑤smoothness = 10.

Surface simplicity. To be resilient to the typical inaccuracy of 3D
sketches [Arora et al. 2017], we encourage the surface reconstruc-
tion to be as simple as possible. We measure the complexity of a
solution as the total number of surface parameters involved. Denot-
ing dim(𝜽𝛼 ) the number of parameters of a surface model 𝑓𝛼 , we
define the simplicity energy as:

𝐸simplicity (𝑙) =
1
𝐷

∑︁
𝛼 ∈{𝑙 (𝑣) |𝑣∈V}

dim(𝜽𝛼 ), (4)

where we set 𝐷 = 35, the number of parameters of a degree 4
model, as a normalizer. Note that by summing over assigned models
only, this energy also pushes for using a small number of models
to explain the 3D sketch, to the point where a single model can be
used to represent multiple non-adjacent regions of the surface. For
all results, we set𝑤simplicity = 0.01 (and demonstrate varying values
in Fig. 8).

4.2 Energy minimization
Algorithm 1 adapts the general PEARLmulti-model fitting algorithm
[Isack and Boykov 2012] to estimate the labeling 𝑙 and surface
model parameters Θ that locally minimize Equation 1. After an
initialization phase, the algorithm alternates between improving the

Algorithm 1: PEARL algorithm [Isack and Boykov 2012]
applied to our problem
(0) Initialize variables
Propose𝑚 vectors of parameters {𝜽 0

1 , · · · , 𝜽
0
𝑚} as initial

surface models
Θ←−

⊕𝑚
𝑖=1 𝜽

0
𝑖

// Concatenated surface parameters

L ←− {1, . . . ,𝑚} // Set of existing labels

𝑙 ←− 𝑙 : 𝑣 ∈ V ↦→ 1 // Initialize with single label

repeat
𝑙prev ←− 𝑙
(1) Optimize labeling
𝑙 ←− 𝛼-expansion [Boykov et al. 2001] ∀𝛼 ∈ L to
optimize previous labeling 𝑙prev for energy (Equation 1),
given the current parametric surface models Θ
L ←− {𝛼 = 𝑙 (𝑣) | 𝑣 ∈ V} // Remove unassigned labels

Θ←−
⊕

𝛼 ∈L 𝜽𝛼 // And the corresponding inactive models

(2) Optimize parametric surface models
for 𝛼 ∈ L do
V𝛼 ←− {𝑣 ∈ V | 𝑙 (𝑣) = 𝛼} // Vertices with label 𝛼

𝜽𝛼 ←− Best fit for points in P𝛼 =
⋃

𝑣∈V𝛼
P𝑣

end
(3) Propose new models
Propose new labels Lnew and models Θnew
L ←− L ∪ Lnew
Θ←− Θ ∪ Θnew

until 𝑙 = 𝑙prev;

labeling and refining the model parameters, and terminates when
the labeling 𝑙 no longer changes. We next detail each step.

Segmentation. At each iteration, we first optimize the current
labeling 𝑙 while keeping all surface model parameters Θ fixed. We
perform 𝛼-expansion [Boykov et al. 2001] – which finds the optimal
change of labeling where some nodes are assigned a label 𝛼 – for
every label 𝛼 ∈ L to efficiently find a local minimum of 𝐸L . 1 While
𝐸smoothness and 𝐸simplicity are straightforward to compute for a given
labeling 𝑙 , 𝐸fidelity requires computing the distance dist (Z(𝑓 ), p)2
between each surface model and the corresponding stroke points.
Since the exact distance between a point and the zero level-set of
an implicit polynomial surface cannot be computed exactly with a
direct method, we employ the first-order approximation proposed
by Taubin [1993],

dist (Z(𝑓 ), p)2 ≈ 𝑓 (p)2

∥∇𝑓 (p)∥2
, (5)

which can be computed in linear time with respect to the number of
stroke points p. Since the resulting labeling might leave some labels
unassigned, we update L to only keep the selected models.

Model representation and fitting. After each segmentation step,
we improve the surface model of each label 𝛼 ∈ L by optimizing
its parameters 𝜽𝛼 to best fit the stroke points p ∈ P𝛼 associated
with the vertices 𝑣 ∈ V𝛼 . We define each surface model as the zero

1We use the C++ multi-label optimization library of Delong et al. [2012] https://vision.
cs.uwaterloo.ca/code/
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Fig. 3. We represent surface patches as zero level-sets of implicit poly-
nomials of degree up to 4. Low-degree polynomials can represent planes,
developable and simple doubly-curved surfaces, while higher-degree poly-
nomials can represent complex freeform surfaces.

level-set of a polynomial 𝑓 : R3 → R,

Z(𝑓 ) = {(𝑥,𝑦, 𝑧) | 𝑓 (𝜽𝛼 ;𝑥,𝑦, 𝑧) = 0},

with 𝑓 expressed as

𝑓 (𝜽𝛼 ;𝑥,𝑦, 𝑧) = X(𝑥,𝑦, 𝑧)𝑇 𝜽𝛼 ,

where 𝜽𝛼 =
[
𝜃1 . . . 𝜃𝑡

]𝑇 is the 𝑡 × 1 vector of coefficients and
X(𝑥,𝑦, 𝑧) a 𝑡 × 1 vector of monomials,

X(𝑥,𝑦, 𝑧) =
[
1 𝑥 𝑦 𝑧 𝑥2 . . . 𝑥𝑑 𝑦𝑑 𝑧𝑑

]𝑇 .

To avoid overfitting to approximate strokes, we limit the expressivity
of the surface models by keeping their degree 𝑑 low. In practice we
set 𝑑 to be at most 4, which corresponds to 𝑡 = 35 parameters. We
describe at the end of this section how we introduce lower-degree
models at the end of each iteration. Fig. 3 shows how surface models
of different degrees capture shapes of varying complexity.

Given the set of stroke points p = (𝑥,𝑦, 𝑧) ∈ P𝛼 , we seek the vec-
tor of coefficients 𝜽𝛼 that minimize the geometric error between the
stroke points and the zero level set of the function 𝑓 . However, the
geometric distance from a point to the zero level-set of a polynomial
has no closed form expression, and minimizing it requires an itera-
tive approach [Ahn et al. 2002]. Similarly, minimizing Equation 5 is
costly since its derivatives are non-linear with respect to the model
parameters 𝜃 . A common alternative consists in minimizing the
algebraic distance to the implicit polynomial surface, which yields a
linear least-squares regression:

arg min
𝜽

∑︁
p∈P𝛼

(
X(p)𝑇 𝜽

)2
.

As shown by Tasdizen et al. [2000], this minimization problem
can be made more stable by also encouraging the gradient of the
implicit function to align with prescribed normals at a set of points
P ′𝛼 :

arg min
𝜽

∑︁
p∈P𝛼

(
X(p)𝑇 𝜽

)2
+ 𝜇

∑︁
p∈P′𝛼

(
1 − np · ∇𝑋 (p)𝑇 𝜽

)2
,

where ∇𝑋 (p) is a 𝑡 × 3 matrix denoting the gradient of the mono-
mial vector 𝑋 (p), and np denotes the normal vector at the point
p. Since we do not have normal information at the stroke points,
we encourage alignment with the proxy mesh normals at the mesh
vertices. Furthermore, we exclude normals from vertices that lie
close to the strokes, since strokes often denote surface discontinu-
ities for which the smooth proxy mesh is only a crude approxima-
tion. We thus define the set of points for the alignment term as

(a) No regularization (b) Alignment (c) Alignment +

D
is

ta
nc

e

0

0.075

Fig. 4. Fitting an implicit polynomial surface to a subset of strokes (thick
red strokes). We visualize a slice of the unsigned distance field in the second
row (distances consider a sketch bounding box diagonal of unit length). (a)
Minimizing the algebraic distance without regularization yields level sets
with spurious turns close to the data points. (b) By encouraging the gradient
to align with the proxy normals [Tasdizen et al. 2000], the implicit function
is well behaved in a neighborhood around the data points. (c) Adding 𝐿2

regularization avoids overfitting to noise in the data points and yields a
more stable zero level-set.

P ′𝛼 = {𝑣 ∈ V𝛼 | P𝑣 = ∅}. Finally, we also include an 𝐿2 regulariza-
tion term to penalize large polynomial coefficients [Tasdizen et al.
2000], yielding:

𝜽𝛼 = arg min
𝜽

∑︁
p∈P𝛼

(X(p)𝑇 𝜽 )2+𝜇
∑︁

p∈P′𝛼
(1−np ·∇𝑋 (p)𝑇 𝜽 )2+𝜆 ∥𝜽 ∥2 ,

(6)
with 𝜇 = 0.1 and 𝜆 = 1. Fig. 4 illustrates the impact of each of these
regularization terms. We provide additional details on how to solve
this minimization problem in Appendix B.
Note that 𝜽𝛼 does not necessarily decrease 𝐸fidelity (Equation 2)

given a fixed labeling, since it minimizes the algebraic distance aug-
mented with regularization terms – and not the geometric distance.
To guarantee convergence to a local minimum of Algorithm 1, we
only update the parameter vector 𝜽𝛼 if this yields a decrease of
𝐸fidelity for the vertices labeled as 𝛼 . If not, we keep the previous pa-
rameter vector and introduce the new parameter vector as a different
model.

Initialization. Starting the algorithm with a good initial guess
leads to higher quality solutions (see evaluation in Fig. 7). We obtain
this initial guess by leveraging the observation that some of the
strokes depict boundaries of smooth surface patches. Assuming that
this is the case for all strokes, we compute an over-segmentation
of the proxy surface by running spectral clustering [Shi and Malik
2000] on the mesh, using the same edge weight𝑤𝑒 as in 𝐸smoothness.
We then fit an implicit polynomial surface to the strokes associated
to the vertices of each cluster to obtain our initial set of models.

Spectral clustering requires the number of clusters to be specified
in advance. Yet, the appropriate number varies among sketches,
depending of their level of details. We address this challenge by
running spectral clustering with different numbers of clusters (in
practice, 20, 30, 40, and 50 clusters), which produces surface models
of different scales.
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For this initial surface fitting, we boost the regularization weights
𝜇 and 𝜆 by a factor 10 to limit complexity of the models and prevent
the appearance of sub-optimal large models across sharp features.

New model proposal. We end each iteration by proposing new
surface models, which helps decrease the energy 𝐸L in subsequent
iterations [Isack and Boykov 2012]. First, we introduce models of
lower degree by fitting a polynomial of degree 𝑑 − 1 to the set of
stroke points P𝛼 for each active model 𝑓𝛼 of degree 𝑑 > 1. Second,
we propose newmodels bymerging pairs of neighboring regions and
fitting a polynomial to the union of their stroke points. We prioritize
merging regions that are separated by edges with a high weight𝑤𝑒 ,
as this strategy is more likely to yield a decrease in 𝐸smoothness. In
practice, we select three pairs of regions to be merged per iteration.

4.3 Extracting the surface mesh
The outcome of our multi-model fitting algorithm is a set of im-
plicit surfaces that extend infinitely beyond the strokes they capture
(Fig. 2c). Our goal is now to extract a triangular mesh from this
arrangement of surfaces. One option to reach this goal would be to
trim each surface along its intersection with other surfaces, for ex-
ample by meshing the isosurfaces, resolving intersections [Cherchi
et al. 2020], and then selecting the set of patches that best cover the
strokes while forming a closed manifold [Bauchet and Lafarge 2020;
Du et al. 2021]. Unfortunately, the halfspaces defined by our implicit
polynomial surfaces are not guaranteed to bound the desired shape,
as two surfaces that describe adjacent regions might not intersect.
Even when neighboring surfaces do intersect, they can be nearly
tangential to each other, which makes the detection of intersections
prone to numerical inaccuracies. We bypass all these difficulties by
leveraging the proxy mesh, as it provides us with a good estimate of
the mesh we are looking for. We formulate our problem as the local
minimization of an energy that projects the mesh towards the im-
plicit surfaces assigned to each region, regularized by a smoothness
term:

𝐸mesh = 𝐸project + 𝐸regularize (7)

Insertion of segmentation boundaries. Before at-
tempting to minimize Equation 7, we first need to
insert edges that split the mesh triangles crossed
by segmentation boundaries, so that these bound-
aries can emerge as sharp surface discontinuities
in the optimized mesh. The inserted vertices (blue circles in inset)
inherit the two or three labels of the regions they separate, yielding
a multi-labeling function that we denote 𝑙 .

Projection to the implicit surfaces. We project each mesh vertex
onto its associated surface patches by minimizing its distance to the
zero-level sets of the corresponding polynomials:

𝐸project (V) =
∑︁
𝑣∈V

∑︁
𝛼 ∈𝑙 (𝑣)

1
|𝑙 (𝑣) |

dist (Z(𝑓𝛼 ), 𝑣)2 , (8)

where we use the first-order approximation from Equation 5 to
compute the distance.

Regularization. Minimizing Equation 8 sometimes pulls neigh-
boring vertices in opposite directions, yielding a distorted surface.

We achieve smoother results by regularizing the optimization with
a 2D Laplacian term on the mesh triangles, and a 1D Laplacian to
favor smooth sharp feature curves:

𝐸regularize (V) = 𝛾2D
∑︁
𝑣∈V

w𝑣 | |Δ2D𝑣 | |2 +𝛾1D
∑︁

𝑣∈Vseams

| |Δ1D𝑣 | |2, (9)

where Vseams is the set of vertices inserted along segmentation
boundaries, and Δ2D and Δ1D denote the discrete graph Laplacian
operator for triangles and edges respectively [Nealen et al. 2006].
We set 𝛾2D = 100 and 𝛾1D = 500.

The weight w𝑣 controls the strength of the surface regularization,
which we want to vanish along segmentation boundaries that cor-
respond to sharp surface discontinuities. We set w𝑣 = 1 for vertices
away from segmentation boundaries, and w𝑣 = 0 for boundary
vertices that are shared by more than two segmentation regions.
For vertices that lie in-between two regions, we adjust their weight
according to the angle formed by the implicit surface normals on
each side of the boundary, with w𝑣 = 0 when the angle is greater
than 𝜋/3, w𝑣 = 1 when the angle is smaller than 𝜋/8, and w𝑣

varies linearly in-between. Effectively, this preserves sharpness of
the boundary between regions that intersect sharply, while favoring
smoothness elsewhere.
In Appendix D, we describe the special case of open meshes,

which necessitate an additional term to prevent the mesh boundary
to contract under the effect of the regularization.

We minimize 𝐸mesh with L-BFGS, by precomputing the gradient
matrices for the quadratic terms.

5 IMPLEMENTATION DETAILS
Proxy creation. Our method requires a proxy surface that has

the same topology as the desired result, and that lies close to the
envisioned surface, so that projecting the strokes onto the proxy
yields the same embedding as it would on the envisioned surface.
The automatic VIPSS surfacing algorithm [Huang et al. 2019]

produced suitable proxies for many of our results. We additionally
re-meshed the output of VIPSS to obtain a high-resolution, uni-
form mesh [Jakob et al. 2015]. However, VIPSS sometimes fails to
surface complex sketches that exhibit many sharp features, a very
sparse sampling, or thin features. In these cases, we experimented
with multiple casual modeling tools to create our proxies in just a
few minutes, including low-poly modeling with Blender [Blender
2020] (Fig. 5c), rough VR sculpting with Adobe Medium [Adobe
2020] (Fig. 5d), assembly of simple geometric primitives (Fig. 17
author1_bulbasaur). We provide an example modeling session in
our accompanying video.

Manually-created proxymeshes are often approximate, andwould
not yield satisfying results if projected directly on the implicit sur-
face models (Section 4.3). We obtain better results by first attracting
the proxy towards the strokes, which we achieve by projecting
the stroke points onto the proxy and by using these points as con-
trol vertices for a Least-Squares mesh defined by the initial proxy
connectivity [Sorkine and Cohen-Or 2004]. Fig. 5 shows how this
attraction brings approximate proxy meshes much closer to the
intended surface.
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(b) VIPSS

(e) Results

(a) Sketch

(c) Low-poly

(d) Sculpt

attract

attract

Fig. 5. For the same sketch, we demonstrate how a proxy mesh can be
created with VIPSS (b), low-poly modeling with Blender [Blender 2020] (c),
and rough VR sculpting inAdobeMedium [Adobe 2020] (d).We automatically
improve the proxy mesh by remeshing, smoothing, and attracting it to the
strokes (middle column). When the sketch is symmetric, we only process
half of the proxy mesh. Note that despite a drastically different original
appearance, all three proxy meshes yield a similar result (e), faithful to the
input sketch (a).

Symmetric sketches. Many VR sketching and sketch-based model-
ing tools provide a mirror plane to ease the creation of symmetric
sketches. When this is the case, we only surface half of the sketch
and mirror the result, which speeds up computation and yields
surfaces that are symmetric by construction.

Open surfaces. We support open surfaces by asking users to an-
notate strokes that denote the boundary of the envisioned surface
(colored in blue in all input sketches), and by trimming the surface
mesh along these strokes. We provide additional details about this
procedure in Appendix D.

User control. Most results shown in this paper were obtained au-
tomatically. Nevertheless, an additional strength of our formulation
is that it admits user control naturally. Fig. 6 illustrates two scribble-
based controls that we offer users to refine the segmentation:
— Inserting a new region. Users can scribble over a part of the mesh

to trigger the insertion of a new region in that part (Figure 6, yel-
low scribbles). This interaction is particularly useful to recover
details that might have been over-smoothed.

— Merging regions. Users can scribble over multiple regions to
merge them into a single one (Figure 6, green scribbles). This
interaction can be used to correct for over-segmentation.

We implement region insertion by introducing a new model, which
we fit to the stroke points associated with the scribbled-on mesh
vertices. We implement region merging in a similar manner, except
that we fit the new model to the stroke points associated with every
vertex that shares a label with any scribbled-on vertex and lies on
the same connected component. For both edits, we also penalize the
use of other models by adding a term to Equation 1:

𝐸penalty (𝑙) = 𝜌
∑︁

𝑣∈Vscribbled

1 − 𝛿 (𝑙 (𝑣), 𝑙new) (10)

(b) Automatic results

(a) Sketches

(c) User scribbles

(d) User refined result

Fig. 6. Our automatic method might produce over-segmented regions or
miss geometric details (b). The user can indicate desired changes by scrib-
bling on a preview of the result (c). Yellow scribbles trigger region insertion,
green scribbles trigger region merging. Encouraging the segmentation to
respect these constraints yields the desired result (d). Left column sketch
©Jacopo Colò.

whereVscribbled denotes the set of scribbled vertices, 𝑙new denotes
the label of the new model, and the penalty 𝜌 is set to (10𝜖)2, with
𝜖 from Section 4.1. We then update the solution by re-running
algorithm 1 from step (1) until convergence.
This combination of new model proposals and a penalties on

other models effectively pushes the optimization towards a different
local minimum that satisfies the user indications. We describe an
edge-collapse algorithm in Appendix C that reduces the complexity
of the mesh on which we compute the labeling, making our method
react faster to user edits.

6 EVALUATION AND RESULTS

6.1 Algorithm evaluation
Initialization strategy. We initialize our method by over-segmenting
the proxy mesh using spectral clustering (Section 4.2). Fig. 7 com-
pares this strategy with two baselines, over multiple runs of the
method. The first baseline strategy creates the initial surface models
by sampling random sets of points among all stroke points in the
sketch. The second baseline applies spectral clustering but keeps
the default regularization weights rather than scaling their values
during the initial surface fitting.

This evaluation reveals that our strategy ismore stable, as it makes
the optimization converge to approximately the same energy for
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Fig. 7. Comparison of different initialization strategies. Each plot shows
the energy (Equation 1) of the converged state over 10 runs with different
random seeds. Initializing the surface models with a random selection of
stroke points yields high variance across runs (left column of each plot).
Spectral clustering identifies local patches that form good candidate models,
but the default regularization weights used to fit these models can result in
complex surfaces that cover large portions of the sketch (middle column of
each plot, red circles in segmentation results). Boosting the regularization
weights favors simpler models at the start of the optimization, yielding
better and more stable results after convergence (right column of each plot).

different random seeds. In addition, our strategy is more effective,
as evidenced by the lower or comparable median energy values
at convergence. Finally, visualizing the segmentation produced by
each strategy highlights the benefit of boosting the regularization
when fitting the initial models, as it prevents the creation of complex
models covering large regions of the sketch, which would be difficult
to remove in subsequent steps of the optimization.
While our initialization strategies guarantees low variance and

similar results regardless of random seed (see bottom two inset
results), for all subsequent results we reduce the influence of initial-
ization by running our method 10 times and selecting the solution
with the lowest energy.

Segmentation parameters. Fig. 8 shows the effect of our simplic-
ity term (Equation 1) by varying its weight. The result is over-
segmented when we omit the simplicity term altogether (Fig. 8a).
Increasing this parameter (Fig. 8b, c) leads to smaller model counts
𝑚, and to models of lower degrees (see the spaceship cockpit), at
the cost of an increase in mean fitting residual 𝜖 . The simplicity
energy also encourages using the same model across disconnected
regions (Fig. 8c, yellow ellipsoid), which cannot be achieved with
the smoothness energy alone.
The other tunable parameter of our method is the factor 𝜖 that

defines the scale of the fitting error we tolerate (Equation 2). Increas-
ing this factor leads to results that follow the strokes more loosely,
which can be useful if the input sketch is imprecise and needs to be
smoothed (Fig. 9).

Influence of proxy mesh. Fig. 10 illustrates the influence of the proxy
resolution and shape on our results. Since the proxy serves as a dis-
crete domain for our segmentation algorithm, its resolution impacts
the size of the regions we can detect. At low resolution, neighboring
strokes will be lumped together and sharp features will be misplaced

(a) (b) (c)
model degree
1 4

Fig. 8. We demonstrate the impact of the simplicity energy by varying the
weight 𝑤simplicity in Equation 1 on two sketches. We measure the number
𝑚 of models used in the segmentation, and the mean deviation 𝜖 between
stroke points and the models of the vertices they are associated with, as a
% of the bounding box diagonal.

Fig. 9. We demonstrate the impact of the fidelity energy by varying the error
scale factor 𝜖 in Equation 2 on the spaceship sketch (top row). In bottom
rows, we show concrete examples of sketches with imprecise strokes where
a higher 𝜖 gives better results compared to the default 𝜖 = 1% parameter.
The error scale factor is measured in % of the sketch bounding box diagonal.

(Fig. 10a, third row). In addition, a low-resolution mesh might lack
degrees of freedom to follow the curvature of the implicit surfaces,
and is thus unable to reproduce the shape of smooth high curvature
parts of the sketch (Fig. 10a, fourth row).
The proxy also serves to embed the strokes into a manifold do-

main representative of the envisioned surface. When the proxy is
too far from the desired surface, strokes that should be disjoint
might end up projecting to the same location on the proxy and be
approximated by the same surface patch (Fig. 10b, top). A slightly
more precise proxy mesh resolves the issue (Fig. 10b, bottom).
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(a) Resolution (b) Geometry

Proxy Result

Fig. 10. Our method depends on the resolution of the input proxy surface
(a) as well as on its shape (b). The proxy should have sufficient resolution to
capture fine details, and be close enough to the envisioned surface to avoid
thin parts of the sketch to collapse. Left column sketch ©Arturo Tolentino.

0%

> 5%

Fig. 11. We evaluate our method on synthetic sketches extracted from
ground truth surfaces using FlowRep [Gori et al. 2017] (bottle, boat) or from
the boundary representation of CAD models (iron, bishop). The deviation is
measured as a % of the sketch bounding-box diagonal, and is low almost
everywhere except in places where the sketch lacks strokes to disambiguate
the intended surface (interior of the iron handle, bottom of the bishop). We
provide the median and maximum deviation for each sketch.

Table 1. For each sketch in the paper, we provide the runtimes for the
initialization (1) – which corresponds to the strokes-proxy association (Ap-
pendix A) and step 0 of algorithm 1; for the iterative segmentation (2), and
for the final mesh optimization (3). We also give the number of iterations
of algorithm 1 necessary to converge to a stable solution.

Sketch name (1) (2) (3) It. In paper
robbins_car1 46.3s 11.4s 68.3s 8 Fig. 1
author1_car 16.7s 1.9 s 41.4s 5 Fig. 2
flowrep_boat 17.1s 1.6 s 45.7s 3 Fig. 11
flowrep_bottle 17.6s 2.2 s 20 s 3 Fig. 11
onshape_bishop 9.2 s 1.2 s 14.8s 4 Fig. 11
onshape_iron 20.6s 5.6 s 25.8s 6 Fig. 11
flowsurf_beetle 14.6s 0.8 s 31.2s 2 Fig. 12
ils_roadster 9.3 s 1.5 s 35.3s 4 Fig. 12
t2f_car_97 18.2s 1.6 s 18.7s 3 Fig. 16
author2_guitar 16.2s 1.6 s 26.8s 3 Fig. 16
robbins_car2 62.3s 9.5 s 64.5s 6 Fig. 16
author1_building 32.9s 4.8 s 41.9s 4 Fig. 16
ils_speaker 16.9s 1.2 s 23.5s 3 Fig. 16
swh_vr_controller 146.4s 79.1s 35 s 8 Fig. 16
author1_bulbasaur 11.1s 3.7 s 23.2s 5 Fig. 17
cassie_hat 17.7s 1.2 s 60.3s 3 Fig. 17
tolentino_shoe 57 s 8.2 s 38.8s 5 Fig. 17

6.2 Results and comparisons
Fig. 16 and Fig. 17 provide a gallery of results obtained by surfacing
3D sketches from varied sources, ranging from clean curve networks
created with 2D sketch-based modeling interfaces [Bae et al. 2008;
Xu et al. 2014], to imprecise and over-sketched stroke clouds created
with 2D and VR ideation tools [Colò 2021; Kim and Bae 2016; Yu
et al. 2021a]. All these results were obtained without user correction.
We use a light gray material to shade proxy meshes computed auto-
matically with VIPSS [Huang et al. 2019], and a dark gray material
for the ones created manually. Note how our method recovers the
fine details and sharp edges depicted in the sketch even from very
smooth, approximate proxy meshes. Our supplementary website
displays each result with an interactive 3D viewer.
We detail in Table 1 the performance of our algorithm on all re-

sults shown in the main paper. Timings vary from a few seconds on
simple sketches up to a few minutes on complex sketches composed
of many strokes. The bottlenecks reside in the initialization of the
algorithm and in the final mesh optimization, while the segmenta-
tion algorithm takes less than 10 seconds in most cases. Users can
thus refine the segmentation multiple times with relatively short
wait times and only compute the final mesh once satisfied.

Comparison against ground truth surfaces. Weevaluate ourmethod
quantitatively by comparing our results to ground truth surfaces
for which curve networks are available. We obtain such data from
FlowRep [Gori et al. 2017], a method to generate descriptive curve
networks from 3D meshes, as well as from CAD models for which
we extract the boundary representation (B-rep) [Koch et al. 2019].
Fig. 11 visualizes the results of this experiment, where the color
map indicates that our results are very close to ground truth except
in ambiguous regions devoid of strokes.
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[Pan et al., 2015] [Pan et al., 2015]Curve network Curve network

Sketchified network

+ high frequency noise

Sketchified network OursOurs[Huang et al., 2019]

Ours[Huang et al., 2019] + high frequency noise Ours[Huang et al., 2019]

[Huang et al., 2019]

Fig. 12. Our method can surface well-connected curve networks, similarly to [Pan et al. 2015]. More importantly, it also achieves similar results from imprecise
sketches that contain duplicate strokes, gaps (middle row) or high-frequency noise (bottom row). Our method also accounts for disconnected parts, like the
red stroke that depicts a concavity on the car, which Pan et al. [2015] ignored.

Comparison against curve network surfacing. Fig. 12 compares our
method to the one by Pan et al. [2015], which is the most recent
method for surfacing well-connected curve networks. The twometh-
ods produce very similar results on the original connected network.
However, a unique strength of our method is to also produce similar
results from disconnected, noisy sketches, which we synthesized by
perturbing the original network (displacing and duplicating strokes,
introducing gaps). Our method also accounts for strokes that are
not connected to the main network, which Pan et al. [2015] had to
ignore (Fig. 12, red strokes at the front of the car).
In Fig. 13, we compare to Pan et al. [2015] on a more complex

input. By balancing fidelity with smoothness and simplicity, our
method tends to miss small details, such as the buttons on top of the
machine. Our smooth surface models also do not capture well the
generalized cylinder that forms the nozzle. In contrast, by assuming
that the input strokes form a clean curve network, Pan et al. can
trust every curve to create interpolating surfaces and can leverage
connectivity information to detect which curves are sharp features.

6.3 Limitations
Relying on geometric criteria only. We emphasize that our method

relies purely on geometric criteria to place sharp features in the

[Pan et al., 2015]Ours

Fig. 13. Our method tends to miss small yet important details (middle) in an
effort to produce smooth, simple outputs robust to imprecise drawings. The
method by Pan et al. [2015] does not face this challenge as they consider
that all input curves are drawn precisely, and as such should be kept in the
output. Similar to Pan et al. [2015], we surface the coffee cup separately
from the coffee machine.

final surface. As a consequence, our method can miss semantically-
important features if they do not contribute significantly to the
shape, such as the round headlights of the car in Fig. 1.
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(a) No stroke at sharp feature (b) Adding a stroke

Fig. 14. Our method cannot take higher-level cues into account, and will
thus fail to align with user intent if a critical sharp feature stroke is missing,
as on the car headlight (a). Adding a stroke and re-running the method
successfully recovers that feature (b).

Internal strokes
Non manifold

Separate in parts
Ignore strokes

Skeletal strokes

Fig. 15. Our current implementation does not automatically support non-
manifold surfaces, as present on the boat and blender (red strokes). Fur-
thermore, our assumption that strokes lie on the surface they depict is not
always true, as there may be some strokes inside the outermost depicted sur-
face (green) or strokes that depict tubular structures (cyan). A workaround
is to manually separate the sketch into parts and surface them individually,
or mark out some strokes to be ignored by our method (second row).

Sharp features not depicted by the strokes. Our algorithm assumes
that all sharp features of the intended surface occur along some of
the input strokes. Fig. 14 illustrates a limitation of this assumption,
where the artist implicitly indicated that the headlight presents a
sharp feature by sharp corners in neighboring strokes. In such cases,
users need to draw a few additional strokes to obtain the intended
surface (Fig. 14b). While our assumption that sharp features are
explicitly represented seems to hold in our dataset, further analysis
of how people draw in 3D is needed to quantitatively evaluate this
hypothesis. In the future, more global cues such as stroke tangent
continuity or sketch symmetry could be leveraged to make surfacing
better aligned with viewer perception.

Other types of strokes. Since we assume that all strokes lie on
the intended surface, our method cannot handle strokes that lie
inside the shape, or that depict the skeleton of a tubular structure
(Fig. 15). While we simply discarded such strokes to produce our
results (see supplemental materials for all original input sketches),

future work could attempt to identify these strokes and surface
them with dedicated representations, such as generalized cylinders
for skeletal stokes [Zhou et al. 2015].

Non manifold configurations. In theory, our method could recover
non-manifold surfaces if provided with a non-manifold proxy mesh.
In practice, we only surfaced manifold shapes because we imple-
mented our algorithm using a manifold data-structure to represent
the mesh. As a work-around, it is typically possible to manually sep-
arate the sketch into multiple manifold pieces that can be surfaced
separately (Fig. 15, bottom row and coffee cup in Fig. 13). An excit-
ing direction for future work would be to perform topology analysis
of the unstructured sketch to detect and process non-manifold parts
automatically.

Iterative sketch creation and surfacing. We did not consider the
problem of surfacing a sketch as it is being created and refined live
by an artist. While our method can be made more efficient to reduce
computation time with more engineering effort, it is not trivial
how to take into account new strokes or edits on an existing stroke
without globally affecting the surface. Moreover, partial sketches
introduce more ambiguity to the surfacing problem since some
regions may be altogether undefined at a given stage of the process.

7 CONCLUSION
After decades of research, a number of robust algorithms now ex-
ist to surface dense point clouds [Berger et al. 2017]. In contrast,
very few methods have been proposed to surface the sparse stroke
clouds that designers produce when sketching in VR or with sketch-
based modeling systems. Inspired by the unique characteristics of
this emerging form of 3D data, we have proposed an approach to
locate smooth patches in unstructured 3D sketches, and to opti-
mize their geometry to produce a piecewise-smooth surface aligned
with salient strokes. The resulting 3D meshes can benefit numerous
tasks. For instance, we used them to occlude hidden strokes in all
figures of this paper, which helps perceive the correct shape from
the sketch via relative depth cues [Arora et al. 2017]. Additionally,
our sketch-aligned surfaces are compatible with all downstream
3D processing and modeling tasks. This opens exciting avenues
to integrate 3D sketching with other creation modalities such as
sculpting [Adobe 2020; Blender 2020; Pixologic 2016]. As we have
demonstrated, sculpting can be used to create a rough proxy surface,
that is then automatically refined by our method to align with a
sketch. It is easy to further refine the surface by sculpting, and in the
future we would like to investigate tighter coupling between surface
and curve-based editing methods, from both interaction design and
geometric representation perspectives.
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(a) Input sketch (b) Proxy surface (c) Result

t2f_car97

author2_guitar

robbins_car2

author1_building

ils_speaker

swh_vr_controller

Fig. 16. Results of our method applied to a variety of 3D sketches (a). We display proxy meshes computed with VIPSS in light gray, and the ones created
manually in dark gray (b). For each sketch, we show the segmented patches with random colors, and the final surface in blue (c). Sketch robbins_car2 ©James
Robbins. ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.
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(a) Input sketch (b) Proxy surface (c) Result

author1_bulbasaur

cassie_hat

tolentino_shoe

Fig. 17. Results of our method applied to sketches of organic shapes (a). We display proxy meshes computed with VIPSS in light gray, and the ones created
manually in dark gray (b). For each sketch, we show the segmented patches with random colors, and the final surface in blue (c). Sketch tolentino_shoe
©Arturo Tolentino.
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A ASSOCIATING 3D STROKES WITH THE PROXY MESH
We provide additional implementation details on how we associate
stroke points 𝑝 ∈ P and proxy mesh vertices 𝑣 ∈ V .
We start by projecting each stroke point to its closest face on

the proxy mesh. We then trace out stroke segments as geodesics
lying on the mesh surface. Note that we do not need to trace precise
geodesics on the mesh, since we are only interested in detecting
which mesh edges are crossed by a given stroke segment. Therefore,
we approximate the geodesics with shortest paths in the dual graph
of the mesh (light blue path in Fig. 18a). This gives us the list of
primal mesh edges that are crossed by the projected stroke segment.

We can then associate stroke points to these crossed edges (Fig. 18,
red) by sampling additional points on the stroke segment (Fig. 18,
blue). If 𝑛 edges are crossed while tracing a segment, we sample
𝑛 regularly-spaced points on that segment. Each of these points is
then associated to the corresponding mesh edge.

Finally, we associate to each vertex 𝑣𝑖 the stroke points associated
with each edge of its 1-ring. If there are multiple stroke points
associated to a single edge, we only associate the closest point to 𝑣𝑖 .
The projection of stroke segments onto the proxy also serves to

define the edge weights of the graph, since we assign a low weight
to edges crossed by a projected segment – red edges in Fig. 18b.
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stroke

proxy

(a) Projection (b) Association

Fig. 18. Associating stroke information to the proxy graph. (a) Stroke points
are projected onto the mesh and we find the shortest path (light blue)
between the mesh faces on the dual graph of the mesh (in grey). (b) The
shortest path yields a list of edges crossed by the projected segment (red).We
associate stroke points sampled from the stroke segment with neighboring
vertices of each crossed edge.

B REGULARIZED FITTING OF IMPLICIT POLYNOMIALS
From Equation 6, we obtain the parameters 𝜽𝛼 that best fit the stroke
points by solving the linear system

(𝑀𝑇𝑀 + 𝜇𝑀𝑇
align𝑀align + 𝜆𝐼 ) 𝜽𝛼 = 𝜇𝑀𝑇

align. (11)

𝑀 is a ( |P𝛼 | × 𝑡) matrix composed of rows of the monomial vector
𝑋 (p) for every point in P𝛼 . And given the set of points P ′𝛼 for the
alignment term,𝑀align is a (1 × 𝑡) vector defined as:

𝑀align =
∑︁

p∈P′𝛼
np

𝑇∇X(p) . (12)

To keep the 𝐿2 regularization position and scale independent, and
resilient to non uniform scaling in the point set P𝛼 , we apply a
transformation to the space of monomials composed of a translation
– to center the data – and a non uniform scaling – to normalize it.
In practice, we compute the column-wise mean values 𝜇 and stan-
dard deviations 𝑆 of𝑀 , and consider the transformed polynomial
function:

𝑓 (𝜽𝛼 ;𝑥,𝑦, 𝑧) =
(

X(𝑥,𝑦, 𝑧) − 𝜇
𝑆

)𝑇
𝜽𝛼 ,

where the division by the vector 𝑆 is a column-wise division. As a
consequence, the vectors 𝑋 (p) that compose matrix 𝑀 are trans-
formed by subtracting 𝜇 and dividing by 𝑆 , and the vector𝑀align is
divided by 𝑆 .

C GRAPH SIMPLIFICATION
Algorithm 1 has a complexity that increases linearly with the num-
ber of nodes in the graph to be labeled [Boykov et al. 2001]. Yet,
we note that only the vertices that are associated to stroke points
contribute to 𝐸fidelity, other vertices being solely determined by the
smoothness and simplicity terms. We leverage this observation to
simplify the graph away from the strokes, which we achieve by per-
forming greedy edge collapses [Garland and Heckbert 1997; Hoppe
et al. 1992]. In our context, we are not interested in preserving the
3D shape of the original mesh, but rather its connectivity. Therefore,
we prioritize collapses that yield vertices of low valence, and stop
collapsing edges whenever any further collapse would yield a vertex
of high valence (> 12 in practice). We exclude edges that have a

(a) Input proxy
& labeled strokes

(b) Weighted graph
& inside/outside nodes

(c) Inside/outside
labeling

Fig. 19. To locate the boundary of an open surface, we ask the user to
indicate which strokes correspond to boundaries in the input sketch (a, blue
strokes). We perform a graph cut on the mesh to separate inside nodes (b,
green) from outside nodes (b, red), while encouraging cuts to happen at
edges crossed by boundary strokes (b, blue edges). The resulting labeling
separates the inside of the surface (c, white) from the outside (c, red).

vertex associated with stroke points to preserve high resolution
near the strokes.
This simplification produces a mesh with spatially-varying res-

olution, which we account for by adjusting the edge weight to
�̃�𝑒 = 𝑤𝑒𝑐𝑒 , where 𝑤𝑒 is the original edge weight as defined in
Section 4.1, and 𝑐𝑒 scales this weight according to the size of the tri-
angles adjacent to the edge, as measured by the Euclidean distance
between the vertices opposite the edge on the two adjacent faces.

After running algorithm 1 on the simplified graph, we propagate
the labeling to the vertices of the original graph based on proximity.
This simple strategy speeds up Algorithm 1 by a factor of 2.9 on
average, while yielding qualitatively similar results.

D BOUNDARIES OF OPEN MESHES.
While the Laplacian regularization in Equation 9 favors smooth, reg-
ular meshes, it has the adversarial effect of shrinking open meshes.
We prevent this effect by adding to 𝐸mesh a term that constrains
boundary vertices of open meshes to stay close to their associated
stroke points

𝐸attract =
∑︁

𝑣∈Vboundary

∑︁
p∈P𝑣

| |𝑣 − p| |2 (13)

where Vboundary is the set of vertices associated to the boundary
strokes of the sketch.

However, we do not know a priori where an open surface should
be trimmed to align with the sketch boundary. We thus ask users to
annotate the boundary strokes of sketches depicting open surfaces
(shown in blue in all sketches). After projecting these strokes over
the proxy mesh, we segment the mesh into an interior and an exte-
rior region separated by the boundary strokes (Fig. 19c), and trim
the exterior region to obtain a mesh whose boundary Vboundary
aligns with the boundary strokes. We perform this segmentation
with a graph cut, where we encourage cuts along edges crossed by
boundary strokes by setting their cost to zero (Fig. 19b). The graph
cut source node is linked to all boundary vertices of the input mesh
(red in Fig. 19b) and the sink node is linked to vertices of the mesh
that have associated stroke points but are geodesically far from the
boundary strokes (green in Fig. 19b).

For ease of comparison, we also apply this boundary cutting step
to results of Huang et al. [2019] against which we compare.
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