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A generic non-invasive neuromotor 
interface for human-computer interaction

Patrick Kaifosh1,2 ✉, Thomas R. Reardon1,2 ✉ & CTRL-labs at Reality Labs*

Since the advent of computing, humans have sought computer input technologies  
that are expressive, intuitive and universal. While diverse modalities have been 
developed, including keyboards, mice and touchscreens, they require interaction  
with a device that can be limiting, especially in on-the-go scenarios. Gesture-based 
systems use cameras or inertial sensors to avoid an intermediary device, but tend to 
perform well only for unobscured movements. By contrast, brain–computer or 
neuromotor interfaces that directly interface with the body’s electrical signalling have 
been imagined to solve the interface problem1, but high-bandwidth communication 
has been demonstrated only using invasive interfaces with bespoke decoders designed 
for single individuals2–4. Here, we describe the development of a generic non- 
invasive neuromotor interface that enables computer input decoded from surface 
electromyography (sEMG). We developed a highly sensitive, easily donned sEMG 
wristband and a scalable infrastructure for collecting training data from thousands of 
consenting participants. Together, these data enabled us to develop generic sEMG 
decoding models that generalize across people. Test users demonstrate a closed-loop 
median performance of gesture decoding of 0.66 target acquisitions per second in a 
continuous navigation task, 0.88 gesture detections per second in a discrete-gesture 
task and handwriting at 20.9 words per minute. We demonstrate that the decoding 
performance of handwriting models can be further improved by 16% by personalizing 
sEMG decoding models. To our knowledge, this is the first high-bandwidth neuromotor 
interface with performant out-of-the-box generalization across people.

Interactions with computers are increasingly ubiquitous, but existing 
input modalities are subject to persistent trade-offs between portabil-
ity, throughput and accessibility. While keyboard text entry, texting, 
trackpads and mice are important, our aim is to enable computation 
in settings in which these conventional methods are not feasible, for 
example, seamless input to mobile computing with smartphones, smart 
watches or smart glasses.

A neural interface that can obviate trade-offs and provide seamless 
interaction between humans and machines has long been sought, but 
has been slow to emerge. In recent years, intracortical neural interfaces 
that directly interface with brain tissue have advanced the premise2,5, 
demonstrating translation of thought into language at bandwidth rates 
comparable with conventional computer input systems3,4. However, 
existing high-bandwidth interfaces require invasive neurosurgery, 
and the models that translate neural signals to digital inputs remain 
bespoke.

Non-invasive approaches relying on recording of electroencepha-
logram (EEG)6 signals at the scalp have offered more generality across 
people, for example, for gaming7, but EEG can require lengthy setup, 
and the low signal-to-noise ratio of these devices has limited their use8.

Regardless of the modality, issues of signal bandwidth, gener-
alization across populations and the desire to avoid per-person or 

session-to-session calibration remain key technical hurdles in the field 
of brain–computer interfaces (BCIs)5,9–12.

To build an interface that is both performant and accessible, we 
focused on an alternative class of non-invasive neuromotor interfaces 
based on reading out the electrical signals from muscles using elec-
tromyography (EMG). Myoelectric potentials are produced by the 
summation of motor unit action potentials (MUAPs) and represent 
a window into the motor commands issued by the central nervous 
system. Surface EMG (sEMG) recordings offer a high signal-to-noise 
ratio by amplifying neural signals in the muscle13, enabling real-time 
single-trial gesture decoding. The nature of the sEMG signal lends itself 
naturally to human–computer interface (HCI) applications because it 
is not subject to problems that vex computer-vision-based approaches, 
such as occlusion, insufficient lighting or gestures with minimal move-
ment. Indeed, sEMG has been deployed for diverse applications in 
clinical settings14,15, for diagnosis and rehabilitation16, as well as pros-
thetic control1,17,18.

However, current EMG systems, including those for prosthetic 
control17, have many limitations for wide-scale use and deployment. 
Laboratory systems are generally encumbered with wires to external 
power sources and amplifiers, and placed over uncomfortable locations 
such as the target muscle belly. Commercially available EMG-based 
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neuromotor interfaces have been historically challenging to control19, 
relating to myriad technical issues such as poor robustness across 
postures20, a lack of standardized data21, electrode displacement22, 
and a lack of both cross-session23 and cross-user generalization24. 
More recently, deep learning techniques have shown some success at 
addressing these limitations25, but a general lack of available EMG data 
and low sample sizes are believed to limit their efficacy21.

To validate the hypothesis that sEMG can provide an intuitive and 
seamless computer input that works in practice across a population, 
we developed and deployed robust, non-invasive hardware for record-
ing sEMG at the wrist. We chose the wrist because humans primar-
ily engage the world with their hands, and the wrist provides broad 
coverage of sEMG signals of hand, wrist and forearm muscles while 
affording social acceptability26,27. Our sEMG research device (sEMG-RD) 
is a dry-electrode, multichannel recording platform with the ability 
to extract single putative MUAPs. It is comfortable, wireless, accom-
modates diverse anatomy and environments and can be donned or 
doffed in a few seconds.

To transform sEMG into commands that drive computer interac-
tions, we architected and deployed neural networks trained on data 
from thousands of consenting human participants. We also created 
automated behavioural-prompting and participant-selection systems 
to scale neuromotor recordings across a large and diverse population. 
We demonstrated the ability of our sEMG-RD to drive computer inter-
actions such as one-dimensional (1D) continuous navigation (akin to 
pointing a laser-pointer based on wrist posture), gesture detection 
(finger pinches and thumb swipes) and handwriting transcription.

The sEMG decoding models performed well across people without 
person-specific training or calibration. In open-loop (offline) evalu-
ation, our sEMG-RD platform achieved greater than 90% classifica-
tion accuracy for held-out participants in handwriting and gesture 
detection, and an error of less than 13° s−1 error on wrist angle velocity 
decoding. On computer-based tasks that evaluate these interactions in 
closed-loop (online), we achieved 0.66 target acquisitions per second 
in wrist-based continuous control, 0.88 acquisitions per second on 
discrete gestures and 20.9 words per minute (WPM) with handwriting.

To our knowledge, this is the highest level of cross-participant per-
formance achieved by a neuromotor interface. Our approach opens 
up directions of sEMG-based HCI research and development while 
solving many of the technical problems fundamental to current and 
future BCI efforts.

Scalable sEMG recording platform
To build generic sEMG decoding models capable of predicting user 
intent from neuromuscular signals, we developed a hardware and 
software platform capable of quickly and robustly coupling the neu-
romotor interface with computers across a diverse population (Fig. 1a). 
Consenting participants (Methods) were seated in front of a computer 
while wearing the sEMG-RD at the wrist; the sEMG-RD is a dry elec-
trode, multichannel recording device with a high sample rate (2 kHz) 
and low-noise (2.46 μVrms), and is compatible with everyday use26,27 
(Fig. 1a and Methods). We fabricated the device in four different sizes 
to ensure coverage across a range of wrist circumferences. The device 
streamed wirelessly over secure Bluetooth protocols and provided a 
battery life of more than 4 h.

We optimized the sEMG-RD for recording subtle electrical poten-
tials at the wrist (Extended Data Fig. 1). We manufactured the device 
in four sizes, with a circumferential interelectrode spacing of 10.6, 
12, 13 or 15 mm, approaching the spatial bandwidth of EMG signals at 
the forearm (~5–10 mm)28, while minimizing the device’s form factor. 
We placed the gap in electrodes to allow for tightening adjustments 
along the ulna bone, where muscles are reduced in density. Together, 
this enabled the sensing of putative MUAPs across the wrist during 
low-movement conditions (Fig. 1b and Extended Data Fig. 2).

To collect training data for models, we recruited an anthropometri-
cally and demographically diverse group of participants (162–6,627 
participants, depending on the task; Extended Data Fig. 3) to perform 
three different tasks: wrist control, discrete-gesture detection and 
handwriting. In all cases, the participants wore sEMG bands on their 
dominant-side wrist and were prompted to perform actions using 
custom software run on laptops (Fig. 1c). For wrist control, the par-
ticipants controlled a cursor, the position of which was determined 
from wrist angles tracked in real time using motion capture. During 
the discrete-gesture detection task, a prompter instructed participants 
to perform nine distinct gestures with a randomized order and interg-
esture interval. During the handwriting task, the participants were 
prompted to hold their fingers together (as if holding an imaginary 
writing implement) and ‘write’ the prompted text. Further training 
data protocol details are provided in the Methods.

We designed the data-collection system to facilitate supervised train-
ing of sEMG decoding models. During data collection, we recorded 
both sEMG activity and the timestamps of labels on the prompter 
using a real-time processing engine. We designed the engine to be 
used during recording and model inference to reduce online–offline 
shift (Methods). To precisely align prompter labels to actual gesture 
times, which may vary due to a participant’s reaction time or compli-
ance, we developed a time-alignment algorithm that enabled post hoc 
inference of gesture event times (Methods).

Examination of raw sEMG traces revealed highly structured patterns 
of activity (Fig. 1d). Discrete gestures evoked patterned activity across 
a set of channels that roughly corresponded to the position of flexor 
and extensor muscles for the corresponding movement (Fig. 1d and 
Extended Data Fig. 1c). Fine differences in sEMG power across instances 
of a given gesture performed during a session (Fig. 1e) highlight the 
power of the platform in acquiring repeated time-aligned examples 
for supervised learning and some of the challenges facing generaliza-
tion of EMG decoders.

Single-participant models do not generalize
It is well known across BCI modalities that both across-session and 
across-user generalization are difficult problems5,11,24,29. We wanted 
to evaluate the difficulty of these generalizations for sEMG decoders. 
Inspection of the raw data revealed pronounced variability in the sEMG 
for the same action across different participants and band donnings 
(which we refer to as sessions), reflective of variations in sensor place-
ment, anatomy, physiology and behaviour that make generalization 
challenging (Fig. 2a,b). As an example of this variability, we found that 
the cosine distances between waveforms of the same gesture across 
sessions and users heavily overlapped with the distribution of distances 
between waveforms of different gestures (Extended Data Fig. 5a), and 
intermingled even in a nonlinear embedding of gesture distances 
(Fig. 2b), highlighting the challenge of the generalization problem.

To evaluate the ability of obtaining performant sEMG decoders 
across sessions for a given participant, we trained single-participant 
models for 100 participants who had collected at least five sessions on 
the discrete-gesture-classification task. For each participant, we held 
out one session for evaluation and then trained models on two, three 
or four of the remaining sessions (Methods). As an offline evaluation 
metric, we used the false-negative rate (FNR), defined as the proportion 
of prompted gestures for which the correct gesture was not detected 
by the model.

Single-participant models trained and tested on the same participant 
achieved offline performance that improved substantially with more 
training data (Fig. 2c). By contrast, models trained on one participant 
and then tested on another showed substantially worse performance 
and benefited only mildly from an increasing amount of training data 
(Fig. 2d), indicating a greater domain shift across people compared 
with across sessions. For 98% of participants, the model trained on their 
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own data performed better compared with all other single-participant 
models (Extended Data Fig. 5b).

We wondered whether cross-participant generalization was difficult 
because there was structure or clusters across people, or whether every 
participant required a relatively unique single-participant model. The 
former could motivate an approach where a set of models trained on 
a small population (within each cluster) could achieve a high level of 

population coverage. The absence of overt structure in a t-distributed 
stochastic neighbour embedding (t-SNE; Extended Data Fig. 5c) of 
the average model transfer FNR between participant pairs suggests 
that there are no obvious participant clusters. Moreover, there are 
no people who exhibit the ability to generate performant models for 
other people, nor are there any people for whom other people’s models 
always perform well (Extended Data Fig. 5d).
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Fig. 1 | A hardware and software platform for high-throughput recording 
and real-time decoding of sEMG at the wrist. a, Overview of sEMG data 
collection. A participant wears the sEMG wristband, which communicates with 
a computer through a Bluetooth receiver. The participant is prompted to 
perform diverse movements of the hand and wrist. A webcam captures their 
hand and wrist, excluding the face. Between sessions within a single day, the 
participants remove and slightly reposition the sEMG wristband to enable 
generalization across different recording positions. b, The sEMG wristband 
consists of 48 electrode pins configured into 16 bipolar channels with the 
sensing axis aligned with the proximal–distal axis of the forearm and the 
remainder serving as shield and ground electrodes (top). A 3D printed housing 
encloses cabling and analogue amplifiers for each channel. A compute capsule 
digitizes the signal and streams sEMG data using Bluetooth. Inset: overlay of  
62 and 72 individual instances of two putative MUAPs evoked by subtle thumb 
(blue) and pinky extension (pink) movements, respectively, from a single  
sEMG channel (Methods). Bottom, a proton-density-weighted axial plane 
magnetic resonance imaging (MRI) scan of the wrist; relevant bone and muscle 
landmarks are labelled. The coloured dots indicate the approximate position of 
electrodes, with an adjustable gap between electrodes placed over an area of 

low muscle density. c, Schematic of the prompters for the three tasks (Methods 
and Extended Data Fig. 4). In the wrist task, the participants controlled a cursor 
using wrist movements tracked in real time with motion capture. In the discrete- 
gesture task, gesture prompts scrolled from right to left. In the handwriting 
task, the participants wrote words presented on the screen. d, Representative 
sEMG signals, high-pass filtered at 20 Hz, recorded during performance of 
discrete gestures reveal intricate patterns of activity across multiple channels 
accompanying each gesture, with prompt timings above (for example, ‘middle’ 
indicates middle pinch, and the green left arrow indicates a leftward thumb 
swipe). Channel colouring corresponds to electrode locations in b. The black 
arrows highlight activation of flexors and extensors during an index-to-thumb 
pinch and release, respectively. e, Representative examples of variability in 
gestural sEMG activations across gesture instances (thumb taps (top) and 
downward thumb swipe (bottom)). The grey lines show the instantaneous 
high-pass-filtered sEMG power, summed across channels, for all instances of a 
gesture during a single band placement. The bold traces show the average. The 
mean was subtracted from all traces, and the power was offset by 10−7 V2 to plot 
on a logarithmic scale without visually exaggerating the baseline variance.
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Offline evaluation of generic models
To avoid the need to train and tune models for each individual, 
we trained generic models that are able to generalize to entirely 
held-out participants. To do this, we collected data from hundreds 
to thousands of data-collection participants for each task. These 
data were then used to train neural network decoding models. In 
each case, we used preprocessing techniques and network archi-
tectures designed for processing multidimensional time series 
(Methods and Extended Data Fig. 6): multivariate power frequency 
(MPF) features and a long short-term memory (LSTM) layer for the 
wrist task, a 1D convolution layer followed by an LSTM layer for the 
discrete-gesture task, and MPF features and a conformer30 for the 
handwriting task, which we anticipated would require an architec-
ture with richer context information (provided through the attention  
mechanism).

Previous studies on large language models31 and vision transform-
ers32 have shown that performance shows power-law scaling with the 
amount of training data and the model size. To investigate whether such 
scaling holds for sEMG decoding, we examined the offline decoding 
performance of models trained on data from varying numbers of par-
ticipants (Fig. 2e–g). Across all tasks, we observed reliable performance 
improvements as a function of the increasing number of participants in 
the training corpus. Consistent with other domains, empirical perfor-
mance follows a power law both as a function of parameters and data 
quantity, with the parameters of the scaling relationship shared across 
architecture sizes (Methods). The largest models showed promising 
offline performance.

Online evaluation of generic models
Ultimately, closed-loop performance of our sEMG decoding models 
is the critical evaluation that confirms their viability as a computer 
interface. For each task, closed-loop evaluation was performed on naive 
participants who had not previously had meaningful experience using 
any sEMG decoder on that task (n = 17 (wrist), n = 24 (discrete gestures) 
and n = 20 (handwriting)). The core tasks involved using the wrist-angle 
decoder to continuously control a 1D cursor to acquire targets, the 
discrete-gesture decoder to navigate and perform actions in a discrete 
lattice, and the handwriting decoder to write out prompted phrases 
that were then visualized on the screen (Fig. 3a–c; the evaluation tasks 
are described in the Methods; see Supplementary Videos 1–3 for rep-
resentative performance, and Extended Data Fig. 7 for a depiction of 
the task dynamics). For each task, the participants performed three 
distinct blocks of trials to allow for characterization of learning (50 tri-
als per block for wrist, 10 trials for discrete gestures and handwriting), 
with the first block always being a practice block that allowed them to 
adapt to the controller.

For all of the tasks, we observed learning effects, whereby the par-
ticipants improved with experience. During the practice block, the 
supervisor gave verbal coaching—for example, “swipe faster” or “write 
more continuously”—as needed to improve participant’s performance. 
The participants were typically able to perform each task on their own 
after the initial practice block but, for the discrete gestures and hand-
writing tasks, we found that coaching during the evaluation block was 
valuable for a subset of participants on trials that they struggled to 
complete (Methods).
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Fig. 2 | Generalization performance of single-participant and multi- 
participant models. a, Cross-participant (columns) and cross-session variability 
(light lines) in gestural sEMG for four discrete gestures (different rows and 
colours) across seven participants. Four of the possible nine gestures are shown 
for clarity. The light lines show the high-pass-filtered sEMG power averaged 
across all channels and all gesture instances during a single band placement. 
The bold lines correspond to the average across all band placements. b, t-SNE 
embedding of sEMG activations (Methods) across participants for the four 
different gestures in a. Gesture colour map as in a, with shading reflecting 
different participants (n = 20). Each dot reflects an individual gestural instance. 
c,d, Single-participant models trained and tested on the same participant (c) or 
different participants (d). Generalization across sessions improves as more 
training data are used. Generalization across participants remains poor even 

when more training data are used. Statistical analysis was performed using 
two-sided Wilcoxon signed-rank tests; all pairwise comparisons are significant; 
P < 10−10. n = 100 single-participant models. The boxes show the median (centre 
line) and lower and upper quartiles (box limits), and the whiskers extend to ±1.5 ×  
interquartile range. e–g, The decoding error of models trained to predict wrist 
angle velocity (e), classify nine discrete gestures (f) and classify handwritten 
characters (g) as a function of the training set size. Data are the mean ± s.e.m. 
decoding error evaluated on a test set of held-out participants (n = 22 for wrist, 
100 for discrete gestures and 50 for handwriting) (Methods). The dashed lines 
and inset equations show fitted scaling curves (N is measured in units of hundreds 
of participants and D in millions of parameters). For discrete gestures, the open 
circle represents varying numbers of sessions per participant (Methods).
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Every participant was able to complete every trial of the three tasks. 
For wrist control, all of the participants were able to successfully navi-
gate to each target and stay on the target for 500 ms to acquire it. Per-
formance was characterized by time to target acquisition (Fig. 3d) and 
dial-in time, which measures the time taken to acquire the target after 
having exited it prematurely (Fig. 3e; definitions are provided in the 
Methods). We found learning effects in which participants improved in 
both of these metrics from the practice block to the evaluation blocks, 
and the majority of them subjectively reported that the cursor moved 
in the intended direction >80% of the time (Extended Data Fig. 8e).

For discrete gestures, all of the participants were able to complete 
the task by navigating with the swipe gestures and performing the 
activation gestures (thumb tap, index pinch and hold, middle pinch 
and hold) when required. Performance on the discrete-gesture task was 

characterized by a measure of how often the first detected gesture fol-
lowing a prompt matched the prompted gesture (Fig. 3f) as well as how 
long it took to complete each prompted gesture (Fig. 3g). The confusion 
matrix across discrete gestures is shown in Fig. 3h. Note that errors on 
this task (reflected in both confusions and first-hit probabilities) are a 
combination of model decoding errors as well as behavioural errors, 
whereby the participant performed the wrong gesture. This is evident 
in the fact that confusions were also present when performing this task 
using a gaming controller rather than an sEMG decoder (Extended Data 
Fig. 8b–d). Index and middle holds were sometimes released too early 
(that is, the detected release followed the detected press less than 0.5 s 
later), and this was indicated in the confusion matrix as an ‘early release’.

The performance of the closed-loop handwriting decoder was evalu-
ated by participants entering prompted phrases and was characterized 
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handwrite prompted text. (Methods, Extended Data Fig. 7 and Supplementary 
Videos 1–3). d,e, The performance of n = 17 naive test participants using the 
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in trials in which the cursor prematurely exited the target before completing 
the hold. Inset: the fraction of trials with premature exits. The dashed red and 
orange lines in panels e and d show the median task performance with the ground 
truth wrist angles measured by motion capture (n = 162, with no previous task 
exposure) and with the native MacBook trackpad (n = 17, with previous task 
exposure), respectively (Methods). f–h, The performance of n = 24 naive test 
participants using the discrete-gesture decoder in the grid navigation task.  
f, The fraction of prompted gestures in each block for which the first detected 
gesture matches the prompt (first-hit probability). g, The mean gesture 

completion rate in each task block. The dashed red lines in panels f and g show 
the median task performance of a different set of n = 23 participants using a 
gaming controller (Methods). h, Confusion rates (normalized to expected 
gestures) in evaluation blocks, averaged across participants. Early release 
denotes a hold of less than 500 ms. i,j, The performance of n = 20 naive test 
participants using the handwriting decoder on the text entry task. i, The 
online CER in each block. j, The WPM in each block. The dashed red line shows 
the median WPM of a different set of n = 75 participants handwriting similar 
phrases in open loop without a pen (Methods). For each participant, the online 
CER and WPM are calculated as the median over trials in each block. For all 
panels, statistical analysis was performed using two-tailed paired sample 
Wilcoxon signed-rank tests; *P < 0.05, **P < 0.005; not significant (NS),  
P > 0.05. The boxes show the median (centre line) and lower and upper quartiles 
(box limits), and the whiskers extend to ±1.5 × interquartile range. The printed 
numbers show the median and outliers are marked with open circles. For each 
baseline device, the dashed lines show the median over participants and the 
shading shows the 95% confidence intervals estimated using the reverse 
percentile bootstrap with 10,000 resamples.
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by the online character error rate (CER; Fig. 3i) and speed of text entry 
(Fig. 3j). Improvements from practice to evaluation blocks indicate that 
participants were able to use the practice trials to discover handwriting 
movements that were effective for writing accurately with the decoder.

For each of these interactions, we also provide performance metrics 
for a baseline interface that does not rely on decoding sEMG (dashed 
horizontal lines in each panel). For 1D continuous control, we find that 
a MacBook trackpad and motion capture ground-truth wrist-based 
control lead to improved median acquisition times of 0.68 s and 0.96 s, 
respectively, compared with 1.51 s for the sEMG wrist decoder. For dis-
crete grid navigation, using a Nintendo Joy-Con game controller showed 
a median gesture completion rate of 1.45 completions per second ver-
sus 0.88 with the sEMG discrete-gesture decoder. For prompted text 
entry, the participants performed open-loop handwriting on a surface, 
without a pen, at 25.1 WPM, higher than the 20.9 WPM achieved with 
the sEMG handwriting decoder (and below 36 WPM achievable with 
mobile phone keyboard33). While our sEMG decoders therefore have 
room to improve relative to these baseline devices, they are sufficiently 
performant to reliably complete each task, while not requiring the use 
of hand-encumbering devices or external instrumentation.

Representations learned by the discrete-gesture model
To develop an intuition about how the generic sEMG decoders function, 
we visualized the representations learned by the intermediate layers 
of the discrete-gestures decoder. The network architecture consisted 
of a 1D convolutional layer, followed by three recurrent LSTM layers 
(Fig. 4a) and, finally, a classification layer.

To interpret the convolution layer, we visualized representative spati-
otemporal filters (Fig. 4b) alongside putative MUAPs (Fig. 4c) detected 
using the wristband during low-movement conditions (Extended Data 
Fig. 2). The filters appear to form a coarse basis set spanning the sta-
tistics of MUAPs; specifically, Fig. 4d,e shows the general similarity in 
temporal frequency content and spatial envelope between the putative 
MUAPs and emergent convolutional filters (Extended Data Fig. 9).

To examine the intermediate LSTM representations, we visualized 
the changing representational geometry across layers. We analysed 
the representations of four properties: gesture category, participant 
identity, band placement and gesture-evoked sEMG power (a proxy  
for behavioural variability over executions of the same gesture).  
Figure 4f–h shows LSTM hidden-unit activity at each layer evoked by 
snippets of sEMG activity triggered on discrete-gesture events, col-
oured by one of the four aforementioned properties. By examining the 
dominant principal components (PCs), we observed a trend of gesture 
category becoming more separable deeper in the network as the rep-
resentations of each gesture become more tightly clustered and less 
or equally sensitive to nuisance variables (participant identity, band 
placement and power). With increasing depth in the network, gesture 
category accounted for an increasing proportion of the variance in the 
representation of each layer (Fig. 4i and Methods). In summary, the 
network learns to solve this task by progressively shaping its representa-
tion of the sEMG to be more and more invariant to nuisance variables.

Personalizing handwriting models improves 
performance
While generic models allow a neuromotor interface to be used with little 
to no setup, performance can be improved for a particular individual by 
personalizing the generic model to data from that participant. Person-
alization has shown benefits to accuracy for related problems in auto-
matic speech recognition in language models34 and acoustic models35 
as well as speech enhancement36. We explored personalization for the 
handwriting task through the fine-tuning of all of the generic model’s 
parameters using additional supervised data from a set of 40 held-out 
participants not included in the training data of the generic model.  

For each participant, we held out three sessions of data (Methods)  
and then trained personalized models for 300 epochs without early 
stopping on varying amounts of data from their remaining sessions 
(Fig. 5a).

Fine-tuning generic models improved their average offline CER for all 
amounts of additional data and for all numbers of pretraining partici-
pants (Fig. 5b). Even for generic models trained on 6,400 participants, 
using just 20 min of personalization data resulted in a 16% improvement 
in the median performance (Fig. 5c). In all cases, more personaliza-
tion data led to further reductions in the average per-user CER across 
the personalized participants. However, across all generic models, as 
the generic model was pretrained with data from more participants, 
the absolute and relative improvement in CER from personalization 
decreased (Fig. 5c), indicating that there are diminishing returns to 
personalizing already performant generic models.

Personalizing models is therefore an alternative to expanding the 
generic corpus size to decrease a model’s CER on the target participant 
(Fig. 5d). For example, for the model pretrained on the smallest corpus 
of 25 participants (or 1,900 min), personalization with 20 min of data 
from the target participant was equivalent to training a generic model 
with 14,000 min of additional data from other participants—7× as much 
data as in the original pretraining corpus. However, as more data from 
other participants are added, the effective enhancement of the generic 
training corpus achieved through personalization diminishes. Adding 
14,000 min of pretraining data is equivalent to 20 min of personaliza-
tion data for the 25 participant model and only about 1 min for the 200 
participant model.

While personalization improved performance on the target partici-
pant, model performance improvements from personalization caused 
the model to overfit to the target participant and did not transfer across 
participants. For the most performant generic model trained (6,527 par-
ticipants, 60.2 million parameters), personalizing on one participant 
and evaluating on another participant generally had a negative impact 
on performance when compared to the generic model performance 
(Fig. 5e). Personalization on the same participant improved the perfor-
mance in 88% of the participants and led to a relative improvement of 
8.35 ± 2.36% (median ± s.e.m. over participants), whereas data from one 
participant used to personalize another participant improved perfor-
mance on only 7% of such participant pairs and led to an average relative 
decrease of 8.86 ± 0.53% (median ± s.e.m., taken across each evaluation 
participant after averaging across personalized models; Methods).

Personalization disproportionately improved the performance of 
poorly performing participants across all generic models (Fig. 5f). For 
example, for generic models pretrained with 6,527 participants, per-
sonalization provided larger relative gains for participants with higher 
generic model CER (Fig. 5f) and more moderate gains or occasional 
regressions for those with already low CERs. In Extended Data Fig. 10, 
we show that these regressions can be mitigated with early stopping 
during fine-tuning, albeit at the cost of increased data required for 
validation.

Overall, these results highlight clear trends and trade-offs for per-
sonalization, facilitating the rational design of data collection. We 
expect that personalization will provide a practical solution for enhanc-
ing the average per-user performance when further scaling generic 
data collection to achieve a target performance level is prohibitive. 
Moreover, personalization can effectively address the long tail of users 
experiencing poor performance with the generic model, as it ensures 
considerable relative performance improvements for these users.

Discussion
Here, we introduce an easily donned/doffed wrist-based neuromotor 
interface capable of enabling a diverse range of computer interactions 
for novel users. We developed a scalable data-collection framework and 
collected a large training corpora across diverse participants (Fig. 1).  
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We used supervised deep learning to produce generic sEMG models 
(Fig. 2) that overcome issues that have long stymied generalization 
in BCIs and sEMG systems. The resulting sEMG decoders enabled 

continuous control, discrete input and text entry in closed-loop evalu-
ations without the need for session- or participant-specific data or 
calibration (Fig. 3). A dissection of intermediate representations in 
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Fig. 4 | The discrete-gesture decoder learns representations that are 
physiologically grounded. a, Schematic of network architecture. Conv1d 
denotes a 1D convolutional layer. The final linear readout and intermediate 
normalization layers are not shown (Methods). b, Representative convolutional 
filter weights (16 input channels × 21 timesteps) from the first layer of the 
trained model. c, Example heat maps of the normalized voltage across all 16 
channels for putative MUAPs recorded with the sEMG wristband (Methods and 
Extended Data Fig. 2) after high-pass filtering (Methods). d,e, The frequency 
response of the channel with maximum power (d) and the root mean square 
(RMS) power per channel (e), both normalized to their respective peaks, for 
each example convolutional filter (blue lines) and putative MUAP (orange lines) 
from b and c, respectively (see also Extended Data Fig. 9). For comparison,  
the dashed black lines show these curves calculated over an entire recording 
session, averaged over ten randomly sampled sessions from the model  

training set. For d, we used the mean temporal frequency response over all  
16 sEMG-RD channels. The sharp frequency response cut off at 40 Hz is from 
high-pass filtering (Methods). f–h, Principal component analysis projection of 
LSTM representations of 500 ms sEMG snippets aligned with instances of each 
discrete gesture, from three participants held out from the training set, each 
with three different band placements. Each row shows the representation  
of each LSTM layer. Each column shows the same data, coloured by discrete 
gesture category (f), participant identity and band placement (g) or sEMG RMS 
power (h) at the time of the gesture. i, The proportion of total variance accounted 
for by each variable, for each layer (n = 50 test participants; Methods). Statistical 
analysis was performed using two-tailed paired sample t-tests; ***P < 0.001.  
The error bars (barely visible) show the 95% Student’s t confidence interval  
for the mean.
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the discrete-gesture neural-network decoder highlighted its ability 
to disentangle nuisance parameters related to band placement and 
behavioural style (Fig. 4). Finally, we demonstrated improvements 
to handwriting decoding performance with additional personaliza-
tion data (Fig. 5). Together, this work defines a framework for building 
generic interaction models using non-invasive biological signals.

Related work in HCI and BCI
The work presented here sits at the nexus between HCI and BCI. 
The HCI community has placed significant emphasis on advancing 
gestural input for various technology applications by deploying 
machine-learning-backed solutions for differing sensing modalities 
such as computer vision (for example, Kinect, Meta Quest) inertial 
measurement units37,38, sEMG24,39,40, bio-acoustic signals41, electri-
cal impedance tomography42, electromagnetic signals43 and ultra-
sonic beamforming44. The most direct antecedent of our work uses 
the discontinued commercial sEMG Myo armband (worn on the 
forearm) for gesture detection, and wrist movement39, in datasets 
with more than 600 participants45,46. However, to date, sEMG-based 
approaches have typically been offline or necessitated within-session 
or participant-specific calibration, limiting their real-world use47.

Our non-invasive sEMG work has intimate connections to BCI. 
EEG-based BCI systems (notably, spellers) can achieve impressive 
bitrates of 100–300 bits per minute48 (versus 528 bits per minute for 

our handwriting decoder). However, EEG performance generally lags 
behind other BCI modalities due to issues with signal quality, interpreta-
tion and lack of standardized hardware or software49. As a result, efforts 
have been focused on small models and relatively small datasets (for 
example, <50 users50).

Intracortical BCI offers higher signal-to-noise ratio, but has been 
limited to single-participant studies due to nonstationarities in record-
ings and over sessions5,11,12,29. While the field of BCI is transitioning to 
neural network decoders4,29,51,52, it remains focused on solving these 
calibration issues, which are largely a function of limited data. Given 
that sEMG signals derive from the summed activity of motor unit firing, 
it is possible that sEMG-decoding methods such as those described 
here can guide methods development for intracortical BCI systems. 
The large-scale approaches demonstrated here may provide direction 
to the larger BCI field, such as BrainGate2,4 or Neuralink53.

Comparison to HCI baselines
To contextualize the absolute performance of our sEMG decoders, 
we compared their performance to both common input methods and 
those using similar gestures as our sEMG decoders use: a MacBook 
trackpad and motion capture ground truth wrist angles for 1D continu-
ous control, a Joy-Con game controller for discrete grid navigation and 
open-loop prompted handwriting for text entry. In each case, these 
baseline devices outperform our sEMG decoders.
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Fig. 5 | Personalization of generic sEMG handwriting models improves 
performance. a, Schematic of the supervised handwriting decoder 
personalization. Predictions before and after personalization are shown above 
and below example prompts (such as ‘howdy!’) for two participants (left and 
right). The green and purple font denotes correct and incorrect character 
predictions, respectively. b, The mean performance (n = 40 test participants) 
of models pretrained on varying numbers of participants (red line) and fine- 
tuned on varying amounts of personalization data for each test participant 
(shades of blue). The dashed lines show power law fits (Methods). c, The relative 
reduction in offline CER that personalization provides beyond a given generic 
model, for varying amounts of pretraining participants and personalization 
data. The dashed lines show the relative improvements calculated from the 
power law fits in b. d, The relative increase in the number of pretraining 
participants that matches CER reduction from fine-tuning on varying amounts 

of personalization data (Methods), for generic models with varying amounts  
of pretraining participants. A value of 1 indicates doubling the number of 
pretraining participants. The dashed lines show the relative increases calculated 
from the power law fits in b. e, The relative reduction in offline CER (beyond the 
60.2-million-parameter 6,527-participant pretrained generic model) achieved 
for each test participant (rows) by personalizing on 20 min of data from every 
other test participant (columns), sorted by the diagonal values. f, The relative 
reduction in CER achieved for each test participant (n = 40) by fine-tuning on 
20 min of personalization data, as a function of the pretrained generic model 
CER for that test participant (60.2-million-parameter model), across various 
numbers of pretraining participants. Improvements from personalization are 
correlated with the CER of the pretrained generic model. We show the range of 
Pearson correlation coefficients across numbers of pretraining participants and 
the median P value (two-sided test); the maximum P value over all fits is 0.0035.



Nature  |  www.nature.com  |  9

However, we note that these baseline interfaces cannot fulfil the same 
role as an always-available sEMG wristband, as they require cumber-
some equipment: tracking wrist angles requires multiple calibrated 
cameras, using a laptop trackpad or a gaming controller encumbers 
the hand, and handwriting requires a pen, paper and a surface. For 
tasks in which constant availability is important (such as on-the-go 
scenarios), the reductions in current decoder performance may there-
fore be acceptable.

Regardless, we expect further improvements in sEMG decoding 
through continued development of user familiarity/skill over time, 
improved models (including through personalization), post-processing 
and hardware innovations for superior sensing. We also note that the 
gestures used with our sEMG decoders are novel, and we found that 
coaching typically improved sEMG decoder performance (Methods). 
We expect user proficiency to grow with increased familiarity with the 
sEMG-RD and underlying gestures.

Future directions
Our sEMG decoder enables direct intentional motor signal detection 
from the muscle, thereby opening directions in novel and accessible 
computer interactions. For example, such a decoder could be used to 
directly detect an intended gesture’s force, which is generally unob-
servable with existing camera or joystick controls. While we dem-
onstrated accurate, fully continuous control over only one degree 
of freedom, it is also likely that joint control of multiple degrees of 
freedom is achievable through additional, separate biomimetic map-
pings such as adding ulnar/radial deviation of the wrist for vertical 
control. Moreover, the sensitivity of sEMG to detect signals as sub-
tle as putative individual MUAPs (Fig. 1b and Extended Data Fig. 2) 
enables the creation of extremely low-effort controls—an important 
innovation with a potential impact for people with a diverse range of 
motor abilities or ergonomic requirements54. Explorations of inter-
actions in neuromotor signal space—as opposed to gesture space—
may enable entirely new forms of control, for example, by exploring 
the limits of novel muscle synergies or interaction schemes that 
directly depend on individual motor unit recruitment or firing-rate  
control.

As a research platform, the sEMG-RD and associated software tool-
ing could enable study of the effects of neurofeedback on motor unit 
activity for novel human–machine interactions55,56, the learning of novel 
motor skills57 or the limits and mechanisms of motor unit control58.

Finally, in the clinic, the ability to design interactions that require 
only minimal muscular activity, rather than performance of a specific 
movement, could enable viable interaction schemes for those with 
reduced mobility, muscle weakness or missing effectors entirely59, 
as well as the development of effective closed-loop neurorehabili-
tation paradigms60. It is unclear whether the generalized models 
developed here and trained on able-bodied participants will be able 
to generalize to clinical populations, although early work appears 
promising54. Personalization can be applied selectively to users for 
whom the generic model works insufficiently well due to differences 
in anatomy, physiology or behaviour. However, all of these new 
applications will be facilitated by continued improvements in the 
sensing performance of future sEMG devices, increasingly diverse 
datasets covering populations with motor disabilities, and potentially 
combining with other signals recorded at the wrist, such as IMU or  
biosignals.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09255-w.

1.	 Battye, C. K., Nightingale, A. & Whillis, J. The use of myo-electric currents in the operation 
of prostheses. J. Bone Joint Surg. Br. 37-B, 506–510 (1955).

2.	 Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally 
controlled robotic arm. Nature 485, 372–375 (2012).

3.	 Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with 
tetraplegia. Lancet 381, 557–564 (2013).

4.	 Willett, F. R. et al. A high-performance speech neuroprosthesis. Nature 620, 1031–1036 
(2023).

5.	 Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. 
Nat. Neurosci. 15, 1752–1757 (2012).

6.	 Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y. & Zhao, X. A comprehensive review of 
EEG-based brain-computer interface paradigms. J. Neural Eng. 16, 011001 (2019).

7.	 Kerous, B., Skola, F. & Liarokapis, F. EEG-based BCI and video games: a progress report. 
Virtual Real. 22, 119–135 (2018).

8.	 Défossez, A., Caucheteux, C., Rapin, J., Kabeli, O. & King, J.-R. Decoding speech 
perception from non-invasive brain recordings. Nat. Mach. Intel. 5, 1097–1107 (2023).

9.	 Brandman, D. M., Cash, S. S. & Hochberg, L. R. Human intracortical recording and  
neural decoding for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 
1687–1696 (2017).

10.	 Lotte, F. et al. A review of classification algorithms for EEG-based brain-computer 
interfaces: a 10 year update. J. Neural Eng. 15, 031005 (2018).

11.	 Degenhart, A. D. et al. Stabilization of a brain-computer interface via the alignment of 
low-dimensional spaces of neural activity. Nat. Biomed. Eng. 4, 672–685 (2020).

12.	 Brandman, D. M. et al. Rapid calibration of an intracortical brain-computer interface for 
people with tetraplegia. J. Neural Eng. 15, 026007 (2018).

13.	 Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. Principles 
of Neural Science, Fifth Edition Vol. 4 (McGraw-Hill Medical, 2000).

14.	 De Luca, C. J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 
13, 135–163 (1997).

15.	 Pullman, S. L., Goodin, D. S., Marquinez, A. I., Tabbal, S. & Rubin, M. Clinical utility of 
surface EMG: report of the therapeutics and technology assessment subcommittee  
of the American Academy of Neurology: report of the Therapeutics and Technology 
Assessment Subcommittee of the American Academy of Neurology. Neurology 55,  
171–177 (2000).

16.	 Campanini, I., Disselhorst-Klug, C., Rymer, W. Z. & Merletti, R. Surface EMG in clinical 
assessment and neurorehabilitation: barriers limiting its use. Front. Neurol. 11, 934 (2020).

17.	 Farina, D. et al. The extraction of neural information from the surface EMG for the control 
of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. 
Rehabil. Eng. 22, 797–809 (2014).

18.	 Scheme, E. & Englehart, K. Electromyogram pattern recognition for control of powered 
upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. 
Dev. 48, 643–659 (2011).

19.	 Biddiss, E. A. & Chau, T. T. Upper limb prosthesis use and abandonment: a survey of the 
last 25 years: a survey of the last 25 years. Prosthet. Orthot. Int. 31, 236–257 (2007).

20.	 Scheme, E., Fougner, A., Stavdahl, Ø., Chan, A. D. C. & Englehart, K. Examining the 
adverse effects of limb position on pattern recognition based myoelectric control.  
In Proc. IEEE Eng. Med. Biol. Soc. 6337–6340 (IEEE, 2010).

21.	 Phinyomark, A. & Scheme, E. EMG pattern recognition in the era of big data and deep 
learning. Big Data Cogn. Comput. 2, 21 (2018).

22.	 Young, A. J., Hargrove, L. J. & Kuiken, T. A. The effects of electrode size and orientation on 
the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Trans. 
Biomed. Eng. 58, 2537–2544 (2011).

23.	 Zia Ur Rehman, M. et al. Multiday EMG-based classification of hand motions with deep 
learning techniques. Sensors 18, 2497 (2018).

24.	 Saponas, T. S., Tan, D. S., Morris, D. & Balakrishnan, R. Demonstrating the feasibility of 
using forearm electromyography for muscle-computer interfaces. In Proc. SIGCHI 
Conference on Human Factors in Computing Systems 515–524 (ACM, 2008).

25.	 Côté-Allard, U. et al. Deep learning for electromyographic hand gesture signal 
classification using transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 760–771 
(2019).

26.	 Jiang, S. et al. Feasibility of wrist-worn, real-time hand, and surface gesture recognition 
via sEMG and IMU sensing. IEEE Trans. Industr. Inform. 14, 3376–3385 (2018).

27.	 Mendez Guerra, I., Barsakcioglu, D. Y., Vujaklija, I., Wetmore, D. Z. & Farina, D. Far-field 
electric potentials provide access to the output from the spinal cord from wrist-mounted 
sensors. J. Neural Eng. 19, 026031 (2022).

28.	 Merletti, R. & Farina, D. Surface Electromyography: Physiology, Engineering, and 
Applications (John Wiley & Sons, 2016).

29.	 Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making brain-machine 
interfaces robust to future neural variability. Nat. Commun. 7, 13749 (2016).

30.	 Gulati, A. et al. Conformer: convolution-augmented transformer for speech recognition. 
In Proc. Interspeech 5036–5040 (ISCA, 2020).

31.	 Hoffmann, J. et al. An empirical analysis of compute-optimal large language model 
training. In Proc. Advances in Neural Information Processing Systems 30016–30030 
(NeurIPS, 2022).

32.	 Zhai, X., Kolesnikov, A., Houlsby, N. & Beyer, L. Scaling vision transformers. In Proc. IEEE/
CVF Conference on Computer Vision and Pattern Recognition 12104–12113 (Computer 
Vision Foundation, 2022).

33.	 Palin, K., Feit, A. M., Kim, S., Kristensson, P. O. & Oulasvirta, A. How do people type on 
mobile devices? Observations from a study with 37,000 volunteers. In Proc. 21st 
International Conference on Human-Computer Interaction with Mobile Devices and 
Services 1–12 (ACM, 2019).

34.	 McGraw, I. et al. Personalized speech recognition on mobile devices. In Proc. 2016 IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP) 5955–5959 
(IEEE, 2016).

35.	 Mdhaffar, S., Tommasi, M. & Estève, Y. Study on acoustic model personalization in a 
context of collaborative learning constrained by privacy preservation. Speech Comput. 
12997, 426–436 (2021).

https://doi.org/10.1038/s41586-025-09255-w


10  |  Nature  |  www.nature.com

Article
36.	 Eskimez, S. E. et al. Personalized speech enhancement: new models and comprehensive 

evaluation. In Proc. 2022 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP) 356–360 (IEEE, 2022).

37.	 Wen, H., Ramos Rojas, J. & Dey, A. K. Serendipity: finger gesture recognition using an 
off-the-shelf smartwatch. In Proc. 2016 CHI Conference on Human Factors in Computing 
Systems 3847–3851 (ACM, 2016).

38.	 Amma, C., Georgi, M. & Schultz, T. Airwriting: a wearable handwriting recognition system. 
Pers. Ubiquitous Comput. 18, 191–203 (2014).

39.	 Mendez, I. et al. Evaluation of the Myo armband for the classification of hand motions.  
In Proc. 15th IEEE International Conference on Rehabilitation Robotics 1211–1214 (2017).

40.	 Tripathi, A., Prathosh, A. P., Muthukrishnan, S. P. & Kumar, L. SurfMyoAiR: a surface 
electromyography-based framework for airwriting recognition. IEEE Trans. Instrum. Meas. 
72, 1–12 (2023).

41.	 Laput, G., Xiao, R. & Harrison, C. ViBand: high-fidelity bio-acoustic sensing using 
commodity smartwatch accelerometers. In Proc. 29th Annual Symposium on User 
Interface Software and Technology 321–333 (ACM, 2016).

42.	 Zhang, Y. & Harrison, C. Tomo: wearable, low-cost electrical impedance tomography for 
hand gesture recognition. In Proc. 28th Annual ACM Symposium on User Interface 
Software & Technology 167–173 (ACM, 2015).

43.	 Laput, G., Yang, C., Xiao, R., Sample, A. & Harrison, C. EM-Sense: touch recognition of 
uninstrumented, electrical and electromechanical objects. In Proc. 28th Annual ACM 
Symposium on User Interface Software & Technology 157–166 (ACM, 2015).

44.	 Iravantchi, Y., Goel, M. & Harrison, C. BeamBand: hand gesture sensing with ultrasonic 
beamforming. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 
1–10 (ACM, 2019).

45.	 Barona López, L. I., Ferri, F. M., Zea, J., Valdivieso Caraguay, Á. L. & Benalcázar, M. E. 
CNN-LSTM and post-processing for EMG-based hand gesture recognition. Intel. Syst. 
Appl. 22, 200352 (2024).

46.	 Benalcazar, M. E., Barona, L., Valdivieso, L., Aguas, X. & Zea, J. EMG-EPN-612 dataset. 
Zenodo https://doi.org/10.5281/ZENODO.4023305 (2020).

47.	 Eddy, E., Campbell, E., Bateman, S. & Scheme, E. Understanding the influence of 
confounding factors in myoelectric control for discrete gesture recognition. J. Neural 
Eng. 21, 036015 (2024).

48.	 Maslova, O. et al. Non-invasive EEG-based BCI spellers from the beginning to today: a 
mini-review. Front. Hum. Neurosci. 17, 1216648 (2023).

49.	 Jayaram, V. & Barachant, A. MOABB: trustworthy algorithm benchmarking for BCIs.  
J. Neural Eng. 15, 066011 (2018).

50.	 Lawhern, V. J. et al. EEGNet: a compact convolutional neural network for EEG-based 
brain-computer interfaces. J. Neural Eng. 15, 056013 (2018).

51.	 Sussillo, D. et al. A recurrent neural network for closed-loop intracortical brain-machine 
interface decoders. J. Neural Eng. 9, 026027 (2012).

52.	 Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar 
control. Nature 620, 1037–1046 (2023).

53.	 Musk, E. & Neuralink, An integrated brain-machine interface platform with thousands of 
channels. J. Med. Internet Res. 21, e16194 (2019).

54.	 Despradel Rumaldo, D. et al. Enabling advanced interactions through closed-loop control 
of motor unit activity after tetraplegia. In Proc. 37th Annual ACM Symposium on User 
Interface Software and Technology Vol. 19, 1–3 (ACM, 2024).

55.	 Formento, E., Botros, P. & Carmena, J. M. Skilled independent control of individual motor 
units via a non-invasive neuromuscular-machine interface. J. Neural Eng. 18, 066019 (2021).

56.	 Bräcklein, M., Ibáñez, J., Barsakcioglu, D. Y. & Farina, D. Towards human motor 
augmentation by voluntary decoupling beta activity in the neural drive to muscle and 
force production. J. Neural Eng. 18, 016001 (2021).

57.	 Radhakrishnan, S. M., Baker, S. N. & Jackson, A. Learning a novel myoelectric-controlled 
interface task. J. Neurophysiol. 100, 2397–2408 (2008).

58.	 Marshall, N. J. et al. Flexible neural control of motor units. Nat. Neurosci. 25, 1492–1504 
(2022).

59.	 Yamagami, M., Portnova-Fahreeva, A. A., Kong, J., Wobbrock, J. O. & Mankoff, J. How do 
people with limited movement personalize upper-body gestures? Considerations for the 
design of personalized and accessible gesture interfaces. In Proc. 25th International ACM 
SIGACCESS Conference on Computers and Accessibility 1–15 (ACM, 2023).

60.	 Mugler, E. M. et al. Myoelectric computer interface training for reducing co-activation 
and enhancing arm movement in chronic stroke survivors: a randomized trial. 
Neurorehabil. Neural Repair 33, 284–295 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License, which permits any 
non-commercial use, sharing, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material.  
You do not have permission under this licence to share adapted material derived from this 
article or parts of it. The images or other third party material in this article are included in the 
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is  
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

CTRL-labs at Reality Labs

Brian D. Allen1, Chris Anderson1, Sacha Arnoud1, Rahul Arora1, Mridu Atray1, Lana Awad1, 
Francisco Ayerbe1, Christopher Baker1, Nicholas Baker1, Alexandre Barachant1, Philip Bard1, 
Wilman Pimentel Beltran1, Adam Berenzweig1, Rohin Bhasin1, Joe Bienkowski1, Sean Bittner1, 
Luke Boegner1, Anu Bolarinwa1, Don Bosley1, Matthew Bracaglia1, Mario Bräcklein1, 
Maclyn Brandwein1, Joe Bravate1, Matt Butler1, Adam J. Calhoun1, Chia-Jung Chang1, 
Daniel Chenet1, Joshua Chester1, Rudi Chiarito1, Rohan Chitnis1, John Choi1, Won Chun1, 
Jeremiah Chung1, James Connors1, Jota Costa1, Mark Cramer1, Raven Cunningham1, 
William F. Cusack1, Nathan Danielson1, Thomas J. Davidson1, Bruno De Araujo1, 
Bob DiMaiolo1, Scott Draves1, Alan Du1, Zaina Edelson1, Phina Enemuo1, Mina Fahmi1, 
Nariman Farsad1, Ali Farshchian1, Randy Feliz1, Jake Fine1, Emanuele Formento1, 
Dustin Freeman1, Jianing Fu1, Jean-Christophe Gagnon-Audet1, Rupesh Gajurel1, 
Jonathan Gamutan1, Sida Gao1, Jonateal Garcia1, Nathalie Therese Helene Gayraud1, 
Minha Ghani1, Sayan Ghosh1, Vickram Gidwani1, Danny Giebisch1, Greg Gimler1, 
Alexandre Gramfort1, Lauren Grosberg1, Bryn Gunther1, Ning Guo1, Chetan Gupta1, 
Sinem Guven Kaya1, Austin Ha1, Katarina Hadjer1, Carlos Xavier Hernández1, Stav Hertz1, 
Carl Hewitt1, Daniel N. Hill1, Kirak Hong1, Lillian Hong1, Helen Hou1, Stepan Hruda1, 
Alex Hsieh1, Vivian Hsiung1, Rongqing Huang1, Yue Hui1, Hazel Hulet1, Shaker Islam1, 
Vinay Jayaram1, Connie Jiang1, Xiaodong Jiang1, Brooke Juarez1, James Jaeyoon Jun1, 
Na Young Jun1, Nirag Kadakia1, Patrick Kaifosh1,2, Nishant Kakar1, Ajay Kamdar1, Ta-Chu Kao1, 
Steven Kober1, TW Koh1, Christina Shabu Koshy1, Andrzej Lawn1, Claire Lee1, Jennifer Lee1, 
JinHyung Lee1, Juheui Amy Lee1, Tiffanie Li1, Jonathan Liao1, Yingru Liu1, Yuxuan Liu1, 
Saar Lively1, Kati London1, Roddy Louie1, Francisco Luongo1, Attila Maczak1, 
Niru Maheswaranathan1, Michael Mandel1, Jesse Marshall1, Najja Marshall1, Mirek Martincik1, 
Nicolas Yvan Masse1, Stephen McAnearney1, Ashley McHugh1, Jorge Aurelio Menendez1, 
Josh Merel1, David Miller1, Ilya Milyavskiy1, Ricardo Pio Monti1, Sean Moore1, 
Yonathan Morin1, Brock Morrell1, Dano Morrison1, Anthony Moschella1, Suman Mulumudi1, 
Conner Muth1, Krunal Naik1, Norris Nakagaki1, Ajay Nathan1, Romario Nelson1, Jimson Ngeo1, 
Keven Nguyen1, Luke O’Connor1, Shay Ohayon1, Garrick Orchard1, Chris Osborn1, 
Timothy M. Otchy1, Emmanuella Owolabi1, Adam M. Packer1, Tejaswy Pailla1, Julia Paredes1, 
Sean Parker1, Diogo Peixoto1, Matias Perez1, Zavion Perez1, Adrien Piérard1, 
Stephen M. Plaza1, Natalie Plotkin1, Eftychios Pnevmatikakis1, Brandon Pool1, Shanil Puri1, 
Sunaina Rajani1, Jose Ramirez Fuentes1, Julian Ramos Rojas1, Tanvi Ranjan1, Devin Reardon1, 
Thomas R. Reardon1,2, Jonathan Reid1, Jason Reisman1, Lain Warawao Nemo Mora y Rivera1, 
Sebi Rolotti1, Andrew Rosenkranz1, Ian Roth1, Likhon Roy1, Ran Rubin1, Alexander Rudnicki1, 
Sam Russell1, Abby Russo1, James Sacra1, Amir Sadoughi1, Roxanna Salim1, 
Aichatou Savane1, Collin Schlager1, David Schwab1, Jeffrey Seely1, Mike Seltzer1, 
Nurettin Dorukhan Sergin1, Ami Shah1, Anish Shah1, Philip Shamash1, Vandita Sharma1, 
Stephie Shen1, Kevin Shi1, Olivia Shiah1, Yasmin Siahpoosh1, Noor Siddiqi1, Jeremy Simpson1, 
Gagandip Singh1, Viswanath Sivakumar1, Jeff Smith1, Seyyid Emre Sofuoglu1, 
Ivy Jiyoung Song1, Morgan Springer1, Adrian Spurr1, Fabio Stefanini1, Connor Stout1, 
Emanuel Strauss1, Swetha Suresh1, Ananya Suri1, David Sussillo1, Ziyi Tang1, Vikram Tank1, 
Jesslyn Tannady1, Aliqyan Tapia1, Tugce Tasci1, Tiberiu Tesileanu1, Aman Tiwari1, 
Anoushka Tiwari1, Calvin Tong1, Blizelle Tormis1, Julia Trabulsi1, Migmar Tsering1, 
Kyle Urquhart1, Peter Walkington1, Megan Wang1, Renxiong Wang1, Zhuo Wang1, 
Christy Warden1, Richard Warren1, Claire L. Warriner1, Ron J. Weiss1, Daniel Z. Wetmore1, 
Ezri White1, Christopher Wiebe1, Steve Williams1, Yuguan Xing1, Chris Ye1, 
Akshay Yembarwar1, Shuibenyang Yuan1, Michael Zawadzki1, Mingrui Zhang1, Jiesi Zhao1, 
Kevin Zheng1, Joseph Zhong1, Lei Zhou1 & Danny Zlobinsky1

https://doi.org/10.5281/ZENODO.4023305
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods

Hardware
sEMG-RD. The sEMG devices consisted of two primary subcompo-
nents: a digital compute capsule and an analogue wristband (Exten
ded Data Fig. 1). The digital compute capsule comprised the battery,  
antenna for Bluetooth communication and a printed circuit board that 
contained a microcontroller, an analogue-to-digital converter and an 
inertial measurement unit. The analogue wristband comprised discrete 
links that each housed a multilayer rigid printed circuit board that 
contained the low-noise analogue front-end circuits and gold-plated 
electrodes. We manufactured the sEMG-RD device in four sizes. The 
analogue front end applied 20-Hz high-pass and 850-Hz low-pass filters 
to the data.

These printed circuit boards were inserted into Nylon 12 PA 3D printed 
housings and then strung together with a multilayer flexible printed 
circuit board along with a strain-relieving fabric. An elastic nylon cord 
was routed continuously between the links and was tied together at 
the wristband gap to form a clasp and tensioning mechanism. Finally, 
the digital compute capsule was connected to the analogue wristband 
through a connector on the flexible printed circuit board and fastened 
together with screws for mechanical stability. The device underwent a 
biocompatibility testing process to ensure its safety. The band is easily 
donned at the wrist with the only requirements being that the compute 
capsule is on the dorsal side and the gap is near the ulna bone.

Data collection
MRI scan. To visualize the position of the sEMG-RD’s electrodes relative 
to wrist anatomy, we collected a high-resolution anatomical MRI scan 
(Siemens Magnetom Verio 3T) from a consenting participant’s right 
forearm. We collected axial scans along the forearm, beginning from 
just distal to the wrist and ending just distal to the elbow. The scan was 
collected pursuant to an IRB governed study protocol conducted by 
Imperial College London.

Participant experience. All data collection was done at either Meta’s 
internal data-collection facilities or at third-party vendor sites. Study 
recruitment and participant onboarding was performed according to 
protocol(s) approved by an external IRB (Advarra). All studies began  
by providing the participants with information about the study proto-
col and asking them to review and sign an IRB-reviewed consent form 
before beginning the study. The participants were provided with the 
opportunity to ask questions before their participation and were able 
to discontinue their participation at any time. On-site research admin-
istrators monitored participants during the study protocol(s) to ensure 
participant well-being. The participants were financially compensated 
for their time participating in the study.

Collection at scale. The participants visited data-collection and labo-
ratory facilities to perform the study protocols. On a given day, there 
were up to 300 participants who partook in a study. Once a participant 
was in the facility, measurements of the wrist and hand were taken, 
including the forearm circumference and wrist circumference. Next, 
we fitted them with an appropriately sized band to collect sEMG data; 
small, 130–148 mm; medium, 148–169 mm; large, 169–193 mm; and 
extra large, 193–220 mm.

All of the participants received general coaching in the form of a 
study introduction, in-person demonstration of the correct and incor-
rect movements, and general supervision of participant compliance 
by research assistants. Study sessions lasted around 2–3 h (including 
rests and briefing). All responses and information provided during the 
study were collected and stored using de-identification technique(s) 
in a secure database.

While all collection occurred in controlled environments, train-
ing and testing datasets demonstrated large variance along band 

placement, sweating, skin condition, demographic diversity, local 
climate and other axes.

Prompted study design. All of our tasks were framed as supervised 
machine learning problems. For the handwriting and discrete-gesture 
recognition tasks, we relied on prompting to obtain approximate 
ground truth for our data, rather than direct instrumentation using 
physical sensors. While prompt labels depend on participant compli-
ance, we found that instrumentation imposed constraints on what 
could be explored, as dedicated sensors need to be built for each indi-
vidual modelling task. Furthermore, the use of sensors such as gloves 
or pressure sensitive pads limited the ecological validity of the signal, 
as physical sensors can restrict the movement range, poses and condi-
tions examined.

For the wrist task, we used motion capture to continuously track the 
participant’s wrist angle (see below). In this case, we used a mixture of 
open-loop prompting (as for the discrete-gesture and handwriting 
tasks) and closed-loop interactions, in which participants performed 
cursor control tasks in which the cursor’s position was determined 
from their wrist angles tracked in real time (see below).

Training and evaluation protocols were implemented in a custom, 
internal software framework that took advantage of the abilities of Lab.
js, an established open-source web-based study builder61. This frame-
work orchestrated both the presentation of task-specific prompter 
applications and the recording of annotations from these applications. 
The framework was developed using TypeScript and the task-specific 
prompters were built on the React framework.

We created the overview figure of our data-collection approach in 
Fig. 1a using a photograph taken at our data-collection facility as a ref-
erence, which was then traced and edited in Procreate, with additional 
colour and graphical elements added in Adobe Photoshop.

Real-time data-collection system. Data collection for our studies was 
performed using an internal framework for real-time data processing 
that supports data collection, offline model training, and benchmark-
ing and online evaluation. At its core, the framework offers an engine 
for defining and scheduling a data-processing graph. On the periphery, 
it provides well-defined APIs for real-time performance monitoring 
and interaction with consumer applications (for example, prompting 
software, applications for stream visualization).

For data collection, our internal platform served as the host for 
recording real-time signals and annotations to a standardized data 
format (that is, HDF5). For offline model training and benchmarking, 
our internal platform provides an API for batch processing of data 
corpora. This helps to generate featurized data from the recorded 
raw-signals and apply model inference for offline evaluation. To ensure 
online and offline parity, the internal platform also supports running 
the same sequence of processing steps on real-time signals for online 
evaluation.

Offline training data corpora
Wrist corpus. The wrist decoder training corpus included simultane-
ous recordings of sEMG and ground truth flexion-extension wrist angle 
(measured with motion capture) from 162 participants, 96 of whom 
recorded 2 sessions (both sessions from each of these participants were 
included in the same train or test split to which they were assigned). 
To track flexion-extension and ulnar-radial deviation wrist angles, we 
placed two light (16 g) 3D printed rigid bodies on the back of the hand 
and on the digital compute capsule of the sEMG-RD. Each of these rigid 
bodies had three retroreflective markers attached, which together  
defined a 3D plane that was tracked in 3D in real time (60 Hz) with <1 mm 
resolution using 18–30 PrimeX 13 W cameras (OptiTrack). We used 
the relative orientation of these two planes to calculate the flexion-
extension and ulnar-radial deviation wrist angles. Only the flexion-
extension angle was used for training and evaluating wrist decoders.



Article
Each session consisted of an open-loop stage, a calibration stage and 

a closed-loop stage, in which the participants controlled a cursor that 
determined its position from these two wrist angles. Throughout all 
stages, the participants were instructed to keep their hand in a ‘laser 
pointer’ posture, with a loose fist in front of the body, thumb on top 
and elbow at approximately 90°.

In the open-loop stage, the participants performed centre-out wrist 
deflections in eight possible directions (four cardinal directions and 
four intercardinal directions) following a visual prompt (Extended 
Data Fig. 4a), for a total of 40 repetitions (5 per direction) in a pseu-
dorandomized order.

In the closed-loop stage, the participants were asked to perform two 
tasks to the best of their abilities: a cursor-to-target task and a smooth 
pursuit task. In both tasks, the flexion-extension and radial-ulnar devia-
tion wrist angles were normalized by their range of motion (measured 
in a calibration stage), centred by the neutral position (measured by 
prompting the user to hold a neutral wrist angle), and then respec-
tively mapped to the horizontal and vertical position of a cursor on 
the screen, in real-time (60 Hz). This mapping consisted of simply 
scaling the (normalized and centred) wrist angles by a constant gain, 
gx. To encourage both small and large wrist movements, two different 
gains were used: gx = 2.0 pixels per normalized radian (half of range of 
motion) and gx = 4.0 pixels per normalized radian (quarter of range of 
motion). Gains larger than 1.0 were required for every user to be able 
to reach the corners of the workspace.

In the cursor-to-target task, the participants were prompted to move 
the cursor to one of the equally sized rectangular targets presented on 
the screen. During each trial, one of the targets was highlighted, and 
the participant was instructed to move the cursor towards that target. 
The target was acquired when the cursor remained within the target 
for 500 ms. Once a target was acquired, the rectangular target disap-
peared, and one of the remaining targets was prompted, initiating the 
next trial, in a random sequence. Once all of the targets were acquired, 
a new set of targets was presented. Three different target configura-
tions were used: horizontal (10 targets presented side-by-side along 
the horizontal axis, with the cursor confined to this axis; Extended Data 
Fig. 7a), vertical (10 targets presented one on top of the other along the 
vertical axis, with the cursor confined to this axis) and 2D (25 targets 
presented in a 5 × 5 square grid; Extended Data Fig. 4b). These three 
configurations were presented in this order in a block structure. In the 
horizontal target configuration block, the participants had to acquire 
all 10 horizontal targets, and repeat this 10 times, for a total of 100 
trials. The first 5 repetitions (50 trials) were performed with the lower 
cursor gain and the last 5 repetitions (50 trials) were performed with 
the higher cursor gain. The vertical target configuration block followed 
the same structure, and the 2D target configuration block consisted 
of 4 repetitions (for a total of 100 trials), with the first 2 performed 
with the lower cursor gain and the last 2 with the higher cursor gain.

Finally, in the smooth pursuit task, the participants were instructed 
to move the cursor to follow a moving target on the screen as closely 
as possible (Extended Data Fig. 4c). Each trial consisted of a 1-min ran-
dom target trajectory, generated by taking a random combination of 
0.1 Hz to 0.25 Hz sinusoids (with randomly sampled phases) along the 
horizontal and vertical axes. The participants performed a total of four 
trials, the first two of which were performed with the lower cursor gain 
and the last two with the higher cursor gain.

Only data within these task stages (open-loop, cursor-to-target and 
smooth pursuit) were used for model training and offline evaluation. 
All data outside of these stages were excluded from the model training 
and test sets. We also excluded data from the cursor-to-target task with 
the vertical target configuration, as the flexion-extension wrist angle 
was mostly constant during this task.

Discrete-gesture corpus. The discrete-gesture training corpus was 
composed of data from 4,900 participants. As noted in the main text, 

there were nine prompted gestures: index and middle finger presses and 
releases, thumb tap and thumb left/right/up/down swipes. Each session 
consisted of stages in which combinations of gestures were promp
ted at specific times (Extended Data Fig. 4d,e). These combinations  
usually included the full set of trained gestures but, in some stages, were 
restricted to specific subsets (for example, pinches only, thumb swipes 
only). During data collection for these stages, the participants were 
asked to hold their hand and arm in one of a range of postures (hand in 
front, palm facing in/out/up, hand in lap, arm hanging by side, forearm 
pronated inwards) or to translate/rotate their arms while completing 
gestures. In around 10% of stages, instead of prompting specific timing, 
the participants were asked to complete sequences of 3–5 gestures at 
their own pace. About one-third of the training corpus was composed of 
a range of null data in which participants were either asked to generate 
specifically timed null gestures (such as snaps, flicks) or to engage in 
more loosely prompted longer-form null behaviours (such as typing 
on a keyboard). On average, gestures occur in around 6% of samples. 
The gestures were unevenly distributed, with thumb gestures being 
more frequent. Given that an event has occurred, individual gesture 
probabilities range from around 9% to 13%. When considering the entire 
dataset including null cases, the probability of correctly guessing any 
specific gesture falls below 1%.

Handwriting corpus. The handwriting recognition corpus comprised 
sEMG recordings from a total of 6,627 participants. The data were col-
lected in short blocks, during which the participants were prompted 
to write a series of randomly selected items, including letters, num-
bers, words, random alphanumeric strings or phrases (Extended Data 
Fig. 4f,g). The participants were prompted with spaces inserted both 
implicitly and explicitly between words. In implicit space prompt-
ing, the participants advance from one word to the next naturally as 
with pen and paper writing. In explicit space prompting, prompts 
with a right dash character would be presented after each word, in-
structing the participants to perform a right swipe with their index 
finger that would later be remapped to a space. This can constrain the 
modelling problem, avoiding the need for the model to infer spaces 
implicitly by relying on factors such as the linguistic context of the 
text being written. We sampled phrases from a dump of Simple Eng-
lish Wikipedia in June of 2017, the Google Schema-guided Dialogue 
Dataset62 and the Reddit corpus from ConvoKit63, after filtering to 
remove offensive words and phrases. Each participant contributed 
varying amounts of data, but approximately 1 h and 15 min each on 
average. Each block was performed in one of three randomly cho-
sen postures: seated writing on a surface, seated writing on their 
leg as the surface or standing writing on their leg. Note that we did 
not have ground truth information about the fidelity with which 
participants wrote these prompts but, for a subset of participants, 
handwriting was performed with a Sensel Morph touch surface de-
vice. Visual examinations of a subset of the Sensel recordings sug-
gested that approximately 98% of prompted characters were executed  
successfully.

sEMG preprocessing
Putative motor unit action potential waveform estimation. Figure 1b 
shows the spatiotemporal waveforms of MUAPs evoked by subtle con-
tractions of the thumb and pinky extensors in one participant. For 
each digit, the participant selected the sEMG channel with maximum 
variance during sustained contractions based on visual inspection of 
the raw signals. Down-selecting to one channel enabled greater acuity 
for visual biofeedback during data collection. Subsequently, the par-
ticipant was prompted to alternate between resting and performing 
sustained contractions of the chosen digit for three repetitions while 
receiving visual feedback about the raw sEMG signal on the selected 
channel. Each rest and movement prompt was 10 s long with 1 s inter
prompt intervals. The participant used the visual feedback on the 



selected channel to titrate the amount of generated force to recruit as 
few motor units as possible with each contraction64,65.

We estimated the MUAP spatiotemporal waveforms W (W ∈ RL×C, 
where L is the number of samples (40) and C is the number of channels 
(16)) for each digit using a simple offline spike-detection algorithm. 
The sEMG traces were first preprocessed by filtering with a second-order 
Savitzky–Golay differentiator filter with a width of 2.5 ms (5 samples). 
The filtered sEMG was rectified to improve the alignment of detected 
MUAPs, averaged over channels, then smoothed with a 2.5 ms Gaussian 
filter to obtain a 1D sEMG envelope. Spikes were detected by peak find-
ing on the sEMG envelope using scipy.signal.find_peaks with promi-
nence=0.5 (ref. 66). MUAPs were extracted using a 20-ms-long window 
across all sEMG channels, centred on each peak. The waveforms shown 
in Fig. 1b were obtained from the selected channel for thumb extension 
(12; blue) and pinky extension (14; pink) using all MUAPs detected  
during the second prompted movement period; no attempt was made 
to cluster MUAPs into different units. For visualization, the opacity of 
each trace was scaled as 1/(1 + |ai − median(a)|), where ai is the peak- 
to-peak amplitude of the ith MUAP and a is the amplitudes of all 
detected MUAPs for each contraction.

MPF features. The wrist and handwriting generic sEMG decoders used 
custom features extracted from the raw sEMG; we refer to this feature 
set as MPF features. To obtain these features, we first rescaled the sEMG 
by 2.46 × 10−6, to normalize the s.d. of the noise to 1.0 (this value was 
determined empirically). Motivated by the need to remove motion 
artifacts67, we then applied a 40 Hz high-pass filter (fourth-order But-
terworth) to the sEMG recordings sampled at 2 kHz. We then extracted 
the squared magnitude of the cross-spectral density with a rolling 
window of T sEMG samples and a stride of 40 samples (20 ms). We used 
T = 200 samples (100 ms) for the wrist decoder and T = 160 samples 
(80 ms) for the handwriting decoder. The cross-spectral density was 
chosen to preserve cross-channel relationships in the spectral domain. 
We estimated the magnitude of cross-spectral density by first taking 
the outer product (over channels) of the discrete Fourier transform of  
the signal (64 sample (32 ms), stride of 10) with its complex conjugate. 
We then binned the result into 6 frequency bins (0–62.5, 62.5–125, 
125–250, 250–375, 375–687.5, 687.5–1,000 Hz). We summed this product 
over each frequency bin, and took the square of the absolute value of  
the sum over frequencies. This produced a set of 6 symmetric and posi-
tive definite 16 × 16 square matrices that update every 40 samples, for  
an output frequency of 50 Hz. Building on robust results in the EEG 
space for this class of features, we applied a log-matrix operation on 
each of these matrices68. Finally, the diagonal and the first three off-
diagonals (rolled over the matrix edge to account for the band being 
circular) were preserved and half-vectorized for each matrix, and 
then concatenated across the 6 frequency bins, producing a single 
384 (6 × 4 × 16) dimensional vector for each 80 ms window. An imple-
mentation for both the cross spectral density estimation and taking 
the matrix logarithm can be found in the pyRiemann Python toolbox69.

Discrete-gesture time alignment. As all discrete-gesture data col-
lection was performed by prompting participants, we had access to 
only approximate timing of the gesture execution (that is, the time at 
which the participant was prompted to perform the gesture). However, 
training sEMG decoding models to infer when the participant performs 
a gesture required more precise alignment of labels with the signal to 
be effective. While a task like handwriting used an alignment free loss 
(that is, connectionist temporal classification, CTC) and would be app
licable in this task as well, forced-alignment enabled us to gain much 
finer control over the latency of the detections produced by our models, 
which was critical for practical use of discrete gestures as control inputs.

When gestures were well isolated, that is, when the intergesture inter-
val was greater than the uncertainty of the timing, existing solutions 
from the literature could be readily deployed on sEMG data, leading to 

robust inference of gesture timing70. However, realistic data collection 
involved rapid sequence of gestures in close succession, which made 
identification of timing of individual gestures a challenging problem 
and required a dedicated solution. We therefore developed an approach 
to infer the precise timing of the gestures.

Our approach was to infer the timing of all gestures in a sequence, 
defined as a series of consecutive gestures for which uncertainty 
bounds overlap. We did this by searching for the sequence of gesture 
timings that best explained the observed data according to a genera-
tive model of our MPF features.

First, for the purposes of this timing adjustment stage, we defined 
the generative model for a set of K gesture instances as the sum of 
gesture-specific templates centred at corresponding event times, tk, 
with additive noise:

∑x t ϕ t t n t( ) = ( − ) + ( )
k

K

k k=0

where x(t) is our features over time, ϕk(t) is a prototypical spatiotem-
poral waveform for gesture of index k (that is, the gesture template for 
the class of gesture corresponding to event k) and n(t) is a noise term. 
We note that this generative model is only valid for ballistic gesture 
execution and power-based features. We also note that templates are 
shared across executions of the same gesture type, but specific to each 
participant and band placement.

We define the generative inference as the joint optimization of ges-
ture templates and times at which each gesture occurred. For each 
recording, we solved this through an iterative algorithm: we first esti-
mated the templates based on prompted times, then inferred times-
tamps of the gesture sequence, and repeated with new inferred event 
times until convergence (that is, when the timestamp updates across 
iterations of the EM algorithm were smaller than a tolerance value).

Templates were estimated by an EMG analogue of the regression- 
based estimator of the event-related potential (rERP), to disentangle 
overlapping contributions of gestures performed in a fast sequence71. 
Timings were obtained by the following optimization problem:

∑∫ x t ϕ t t tmin ( ( ) − ( − )) dt K
t k

K

k k=0... =0
2

k

We optimized this numerically through a beam search algorithm, sub-
ject to additional ad hoc constraints that bounded how far the adjusted 
times could deviate from the prompted times based on priors from the 
data-collection protocol.

Direct application of the above procedure produced timestamps that 
were referenced to the session template, and there was an indetermi-
nacy as to the timing offset within the gesture, which can vary due to 
initial conditions. To better standardize alignment of template timing 
across individuals, we performed a global recentring step at the end 
of timestamp estimation. Specifically, we found the time of maximal 
correlation between the session template (that is, for a particular par-
ticipant) and a global template (grand average of all templates across 
participants).

Gesture-trigged sEMG activations. To inspect the structure of 
sEMG activations across gestures and participants (Fig. 2b), we used 
EMG covariance features. Specifically, we concatenated the 0-, 1- and 
2-diagonals of the sEMG covariance matrix over a 300 ms window cen-
tred on each gesture, yielding a 48 × 60-dimensional feature space. To 
produce the embeddings, we ran t-SNE in two dimensions with perplex-
ity 35 on the flattened feature space.

Single-participant discrete-gesture modelling
Training details. To train the single-participant models for the discrete- 
gesture classification task, we selected 100 participants who had 
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completed at least five sessions of data collection and selected five 
of those sessions. We then randomly picked four of these sessions for 
training and the remaining held-out session for testing. From these four 
sessions we randomly created nested subsets of two, three and all four 
sessions to train three different models for each participant. Given the 
limited amount of training data per model, we used the MPF features 
and a small neural network as described below.

Architecture. The single-participant discrete-gesture model took as 
input the MPF features. The network architecture consisted of (a) one 
fully-connected (FC) layer with Leaky ReLU activation function followed 
by (b) cascaded time-depth separable (TDS) blocks72 across time scales 
and (c) three more FC layers to produce a logit value for each of the nine 
discrete gestures to be predicted. For (b), we used two TDS blocks per 
time-scale: at each scale s, an AveragePool layer with kernel size 2s was 
applied to the output of (a) and fed to a TDS block with dilation 2s. The 
output was then added to the output of scale s − 1 (if it existed) and 
passed through another TDS block with dilation 2s as the output of scale 
s to be used by the next scale s + 1 (if it exists) or subsequent layers. We 
used 6 scales (s = 0, …, 5), and the feature dimension was set to 256 for 
all TDS blocks and all but the very last FC layer.

Optimization. We used the standard Adam optimizer with the following 
learning rate schedule: the learning rate increased linearly from 0 to 
1 × 10−3 over a five-epoch warm-up phase, then underwent a one-time 
decay to 5 × 10−4 after epoch 25, and remained constant thereafter. Each 
model was trained for 300 epochs to avoid under- or over-fitting for 
single-user models, based on previous empirical observations. A binary 
cross-entropy loss was used as with the generic model.

Offline evaluation. To evaluate the performance of each model on the 
given held-out sessions, we followed the same procedure described  
under the ‘Discrete gestures’ part of the ‘Generic sEMG decoder model-
ling’ section. In brief, we triggered gesture detections on the correspond-
ing model probability crossing a threshold of 0.35, filtered all detected 
gestures through debouncing and state machine filtering, and then used 
the Needleman–Wunsch algorithm to match each ground-truth label 
with a corresponding model prediction. We then quantified perfor-
mance using the FNR, defined as the proportion of ground-truth labels 
for which either the matched model prediction is incorrect or there is 
no matched model prediction. We calculated the FNR independently 
for each gesture and then took the average over the nine gestures. We 
used FNR rather than CLER (the metric used for generic models) owing 
to the very small number of events detected for some poorly perform-
ing models, which lead to a large number of labels without a matched 
model prediction, which are ignored by the CLER metric.

Generic sEMG decoder modelling
Related deep learning architectures and approaches. The three 
HCI tasks described here—continuous wrist angle prediction, dis-
crete action recognition and the transcription of handwriting into  
characters—represent related but distinct time-series modelling and 
recognition tasks. Machine learning and, specifically, deep learning 
approaches have become extremely popular solutions to these prob-
lems, including convolutional models73, recurrent neural networks74 
and streaming transformers30.

As an example of the similarity between our tasks and established 
machine learning problems, consider the relationship between hand-
writing recognition from sEMG and automatic speech recognition (ASR) 
from audio waveforms. Both tasks map continuous waveform signals 
(with dimensionality equal to the number of microphones or sEMG 
channels) at a fixed sample rate, to a sequence of tokens (phonemes 
or words for ASR, characters for our sEMG-RD). Components of our 
modelling pipeline have analogues in ASR, including feature extraction, 
data augmentation, model architecture, loss function, decoding and 

language modelling. As noted below, each of these modelling pipeline 
components required substantial domain-specific modification for 
sEMG models.

For feature extraction, ASR typically uses log mel filterbanks; we 
used our analogous MPF features (see the section ‘MPF features’), as 
discussed below. For data augmentation, we used the ASR technique 
of SpecAugment75, which applies time- and frequency-aligned masks 
to these spectral features during training. A popular model architec-
ture for ASR is the Conformer30, which provides the advantages of 
attention-based processing in a form that is compatible with causal 
time-series modelling. We found that this method worked well for 
sEMG-based handwriting recognition as well. A popular loss function 
for ASR is CTC76, which allows neural networks to be trained from wave-
forms and their textual transcriptions, without the need for a precise 
temporal alignment. As we similarly had pairs of sEMG recordings and 
transcriptions without precise temporal alignment, we also used CTC to 
train our models. When decoding models at test time, ASR typically uses 
a beam search77 to approximate the full forward-backward algorithm 
lattice78 while still incorporating predictions from a language model, 
biasing decoding towards more likely character and word sequences. 
Experimentation presented in this work used ‘greedy’ CTC decoding, 
although beam decoding with language modelling in our decoders 
would have been possible79.

In addition to ASR, we drew from an established literature of machine 
learning approaches for EEG and EMG analysis that explores different 
signal featurizations and both classical and deep learning architec-
tures. In the case of EMG, more expressive raw sEMG or time-frequency 
decomposed features (for example, Fourier or Wavelet features) have 
been shown to achieve stronger performance than coarser temporal 
statistics like RMS power80,81. In the case of EEG, MPF features68 have 
proven to be a simple and robust featurization achieving state of the 
art, or near state of the art, performance for many tasks10. In agreement 
with the literature, we find that MPF features offer clear advantages on 
the wrist classification task over RMS power (Extended Data Fig. 6). As 
MPF features are computed across a sliding window of 100 ms, which is 
comparable to the temporal extent of our discrete gestures, we chose 
to instead use raw EMG features for the discrete-gestures task.

Both EMG interfaces and BCIs have been approached with a variety 
of different learning architectures in the literature, including both 
classical machine learning approaches (for example, random forest, 
support vector machine) and deep-learning-based approaches81. While 
the choice of modelling approach is problem dependent, in general, for 
large datasets, deep learning approaches outperform more classical 
machine learning techniques82.

Wrist
To train wrist decoders, we trained a neural network to predict instan-
taneous flexion-extension wrist angle velocities measured by motion 
capture (see the ‘Wrist corpus’ section above). We consistently held 
out a fixed set of 10 participants for validation and 22 participants for 
testing, and varied the number of training participants from 20 to 130.

Architecture. The wrist decoder network architecture took as input our 
custom MPF features of the sEMG signal. These features were passed 
through a rotational-invariance module, which comprised a fully con-
nected layer with 512 hidden units and LeakyReLU activation. This 
module was applied to sEMG channels that were discretely rotated by 
+1, 0 and −1 channels, and the resulting outputs were then averaged 
over the rotation process. This output was then passed through two 
LSTM layers of 512 hidden units each, a LeakyReLU activation, and a 
final linear layer producing a 1D output. For the smaller network archi-
tecture reported in Fig. 2e, we used only 16 hidden units in the initial 
MLP and LSTM, and only 1 rather than 2 LSTM layers. A forward pass of 
the larger architecture required 1.2 million floating point operations 
(FLOPs) per output sample.



Optimization. We trained each network with the Adam optimizer for 
a maximum of 300 epochs, with a learning rate of 1 × 10−3. We used an 
L1 loss function and a batch size of 1,024, with each sample in the batch 
consisting of 4 (contiguous) seconds of recordings. We evaluated the 
test performance of the training checkpoint with the lowest L1 loss of 
the validation data. Training the largest model on the largest training 
set took 36 s per epoch, for a total of 3 h on a single NVIDIA A10G Ten-
sor Core GPU.

Discrete gestures
To train discrete-gesture models, we segmented training data from 
participants into groups of 40, 80, 160, 320, 640, 1,280, 2,800 and 
4,800 participants. For each group, we tested the generalization per-
formance of models on offline data from the same set of 100 held-out 
participants. For validation, another set of held-out users was used; 
we used a random set of 16 users for the training groups of size 40 and 
80. For larger groups, 10% of the training users were used for valida-
tion. Each dataset used in training, validation and testing contained 
recordings from only a single session per participant. For the larg-
est model, denoted with a separate marker in Fig. 2f, we used 4,800 
training participants and we included multiple sessions of data when 
available (that is, many participants collected multiple repeats of the 
open-loop training protocol). This last point was not included in the 
fitting procedure for the scaling law, but this model was used in the 
closed-loop evaluations.

Discrete-gesture labels were obtained from the gesture prompts by 
first aligning them to the EMG using the algorithm described above 
in the ‘Discrete-gesture time alignment’ section. To facilitate gesture 
detection, we then shifted these labels forward in time by 100 ms to 
provide the model with a 100 ms longer context of sEMG signal before 
making a prediction. These shifted labels were used both in model 
training and for offline evaluation.

For offline evaluation, we first converted the logits outputted by 
the model into discrete-gesture predictions. Gesture predictions 
were triggered whenever the probability for any gesture went above 
the threshold value, set to 0.35 (based on a hyperparameter search 
using the validation set). These predictions were then filtered using 
three steps: debouncing, event matching and state-machine filter-
ing. In debouncing, whenever a gesture was predicted within 50 ms of 
another gesture, the second gesture was removed. The sole exception 
was release events, which were not debounced when preceded by a 
different gesture, to ensure the inclusion of quick index/middle taps 
(that is, a press immediately followed by a release). In event match-
ing, we matched ground-truth labels to model predictions using the 
Needleman–Wunsch algorithm for sequence alignment83. We included 
the constraint that ground-truth labels and model predictions can 
only be matched if their offset falls within a tolerance window of −50 
to +250 ms (centred at the aforementioned +100 ms label shift). This 
provided us with a sequence of ground-truth events and a correspond-
ing sequence of matching predicted events. The predicted events were 
then further processed with a state-machine filter, in which predicted 
release gestures were removed if the previous gesture in the ground 
truth sequence was not the expected press gesture (that is, index press 
for index release and middle press for middle release). State-machine 
filtering was done to avoid penalizing the model for mistaken release 
predictions that would not influence online performance, where 
releases were only used for index/middle holds, which first had to be 
triggered by a press (see the ‘Discrete gestures’ part of the ‘Online evalu-
ation’ section below). Following this state-machine filtering step, we 
performed event matching again to match the ground truth gestures 
with the state-machine-filtered model predictions.

Given this sequence of ground truth gestures and matching predic-
tions, we evaluated model performance with the classification error 
rate (CLER), defined as the proportion of ground-truth labels for which 
the matching prediction is incorrect. In calculating this metric, we 

ignored any ground-truth labels without a matching model prediction 
to reduce sensitivity to false negatives that can occur from participant 
noncompliance and for consistency with online metrics for which no 
prompt-based ground truth is available. We calculated CLER indepen-
dently for each gesture and then aggregated these into a single value 
by taking the average of the nine per-gesture CLERs.

Architecture. The discrete-gesture network architecture took as input 
rescaled and high-pass filtered sEMG signal. sEMG was rescaled by 
2.46 × 10−6, filtered through a 40 Hz high-pass filter (fourth-order But-
terworth, as was done for the MPF features used for the other models; 
see the ‘MPF features’ section) and then passed through a sigmoidal 
function ( f x x μ x( ) = /( + )∣ ∣ ) to reduce the effect of outliers, with μ = 32 
(found to be performant through a hyperparameter sweep). The net-
work architecture consisted of a 1D convolutional layer (with a stride 
of 10 to downsample the input from 2 kHz to 200 Hz), followed by a 
dropout layer with dropout probability 0.1, a layer norm layer, three 
LSTM layers with dropout probability 0.1 in between them, a second 
layer norm layer and a final linear readout layer with a sigmoid nonlin-
earity on top to predict the probability of each of the nine gestures 
(index/middle finger press and release, thumb tap and thumb left/
right/up/down swipe). For the smaller model, the dimensions of the 
convolutional layer and the number of hidden units in the recurrent 
blocks were set to 128. For the larger model, they were set to 512. A 
forward pass of the larger architecture required 353,300 FLOPs per 
output sample.

Optimization. Networks were trained using the Adam optimizer. To 
mitigate divergence during training, gradient clipping was applied 
throughout. We additionally used a learning rate scheduler that linearly 
ramped up the learning rate from 5 × 10−7 to 5 × 10−4 over the first 5 epo
chs, and then decayed it by a factor of 0.5 every 25 epochs thereafter. 
For the smaller model, a larger learning rate was used: the maximum 
learning rate was ramped up from 10−6 to 10−3 and then decayed in the 
same way. For all models, we used a batch size of 512. Training was done 
using a multilabel binary cross-entropy loss, whereby each gesture is 
independently evaluated against its own absence. Each model was 
trained for a fixed wall clock duration equal to the time it took the larg-
est model to reach convergence. Final checkpoints were selected based 
on the model that yielded the highest validation score, defined as a 
proxy of the CLER metric that can be run online. This proxy CLER is 
obtained by computing the argmax of the model output probabilities 
and comparing them against a temporal window (50 ms before–150 ms 
after) around each ground truth event. Training the largest model on 
the largest training set took 10 min per epoch, for a total of 12 h on an 
NVIDIA A10G Tensor Core GPU.

Handwriting
To train handwriting models, we used the CTC loss as described pre-
viously76. Notably, we used characters instead of phonemes for this 
purpose. The characters predicted included all lower-case letters [a-z], 
numbers [0-9], punctuation marks [,.?'!], and four gestures for text 
input control [space,dash,backspace,pinch]. When spaces were explic-
itly prompted with a right dash during data collection to perform a right 
index swipe gesture, model targets were both a <dash> and <space>, 
for example, “hello<dash><space>there”. In prompts where spaces 
were implicitly prompted, the model target was simply <space>, that 
is, “hello<space>there”. Moreover, we integrated a greedy implemen-
tation of the FastEmit regularization technique84. This regularization 
approach effectively reduced the streaming latency of our models by 
penalizing sequences of ‘blank’ outputs.

Nine training corpora were generated, each containing a vary-
ing number of participants ranging from 25 to 6,527 in a geometric 
sequence (excluding the last point). Each corpus was a superset of 
the previous corpus’s participants, ensuring that participants in 



Article
the 25-participant corpus are also present in the 50-participant and 
100-participant corpora, and so on. The participants were uniformly 
sampled without replacement from the entire corpus, preserving the 
distribution of data quantity per participant found in the full corpus. 
We used 100 held-out participants to create our evaluation corpora, 
which remained constant throughout our investigation. The validation 
corpus comprised data from 50 participants and was used for hyperpa-
rameter selection and early stopping during model training. The test 
corpus contained data from 50 participants and served for the final 
evaluation of each handwriting model’s generalization performance. 
We also used a subset of these 50 test participants for our personaliza-
tion corpus (see the ‘Personalization experiments’ section).

Two primary data-augmentation strategies were used. The first 
involved SpecAugment75, which applies time- and frequency-aligned 
masks to spectral features during training. The second strategy 
involved rotational augmentation, randomly rotating all channels by 
either −1, 0 or +1 position uniformly. This meant that channel signals 
were shifted one channel to the left, remained unshifted or were all 
shifted to the right, respectively.

For evaluating the model’s offline performance for each user, we 
used the WPM and CER aggregated over all prompts collected for that 
user, for instance:

∑
∑

CER =
edit_distance

prompt_length
,i i

i i

where edit_distancei is the Levenshtein distance between the prompt 
and the model output for prompt i and prompt_lengthi is the length 
of the prompt.

Architecture. The handwriting network architecture took our cus-
tom MPF features of the sEMG signal as input. These features were 
passed through a rotational-invariance module, exactly as described 
for the wrist decoder above. The channel rotation in this module was 
performed in addition to the channel rotation data augmentation 
described above. The signal was then passed through a conformer30 
architecture consisting of 15 layers. Each layer encompassed 4 attention 
heads and used a time-convolutional kernel with a size of 8. Through-
out the conformer layer convolutional blocks, a stride of 1 was used, 
except for layers 5 and 10, where the stride was set to 2. To ensure that 
the model functioned in a streaming manner, a modified conformer 
architecture was used. This adaptation is similar to the approach out-
lined previously85, but with adjustments to ensure causality. Specifi-
cally, self-attention is solely applied to a fixed local window situated 
directly before the current time step. In our networks, the size of this 
attention window was 16 for the initial 10 conformer layers and then 
decreased to 8 for the subsequent 5 layers. Finally, the outputs from 
the conformer blocks were subjected to average pooling across chan-
nels. They were then passed through a linear layer, which projected the 
output to match the size of the character dictionary. A softmax function 
was applied thereafter. During decoding, the model’s best estimate at 
each output time step was greedily followed, and repeating characters 
in the prediction were removed to reduce the output.

In our investigation, we explored various trainable model param-
eter counts. We manipulated the parameter count of our models by 
adjusting the feed-forward dimension and input dimension within our 
conformer architecture. Importantly, we upheld a consistent 1:2 ratio 
between the input dimension and the feed-forward dimension in the 
conformer blocks. A forward pass of the larger architecture required 
801.7 million FLOPs per output sample.

Optimization. The training of our conformer architecture was executed 
using AdamW as the optimization algorithm. This process spanned a 
maximum of 200 epochs and involved a learning rate set at 6 × 10−4 for 
the 1 million parameter model and 3 × 10−4 for the 60 million parameter 

model, both with a weight decay of 5 × 10−2. A cosine annealing learn-
ing rate schedule was implemented, featuring a warm-up period last-
ing 1,500 steps and a minimum learning rate of 0. Our chosen batch 
size was a total of 512 across 32 processes each with a batch size of 16, 
wherein each sample within the batch represented a prompt that was 
zero-padded to match the length of the longest prompt within that 
batch. To prevent gradient explosion, we applied gradient clipping 
with a norm threshold of 0.1 throughout the training process. The train-
ing length was chosen to ensure that models trained would converge 
at all training corpus scales by visually inspecting past experimenta-
tion of similar experiments. Other hyperparameters such as learning 
rate, weight decay, learning rate schedule and gradient clipping were 
determined based on previous hyperparameter searches optimizing 
performance on the 50 participant validation corpus. Lastly, we as-
sessed the test performance of the training checkpoint corresponding 
to the lowest validation CER. Training the largest model on the largest 
training set took 33 min per epoch, for a total of 4 days 17 h on 4 NVIDIA 
A10G Tensor Core GPU running a distributed data parallel pipeline.

Generic decoder scaling laws
Fitted function. In Fig. 2d–f, we show the fits of the generic error scaling 
with the number of training participants. The fits follow a functional 
form taken from the large language model literature31, where the error 
is a function of both model size (D, in number of parameters) and data 
quantity (N, in number of participants):

Er e A N A D= + / + /N
α

D
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where all fitted parameters are positively bounded. It is generally 
understood that the e term in this equation is the irreducible error of 
the task and the second and third terms both contribute to the error 
reduction as N and D are increased, respectively. Note that there exist 
diminishing return regimes if either N or D are increased individually, 
as the other term fixes the asymptotic error floor. Also note that the 
definitions of N and D are swapped relative to ref. 31.

Fitting procedure. A single set of parameters fits all of the observed 
points in each graph, with the exception of the heterogeneous data-
point in the discrete-gesture experiments that we keep held out because 
of its training corpus distinction with the rest of the points. The fitted 
parameters were obtained by minimizing the mean squared logarithmic 
error (MSLE) using the L-BFGS-B optimization algorithm86 along with 
200 iterations of the basin hopping strategy87. The initial guess and the 
bounds for the fitted parameters are shown in Supplementary Table 1.

Online evaluation
Task participants and structure. For online studies, we recruited 
participants who had no prior experience with the sEMG task being 
studied and, in the majority of cases, had no previous experience with 
sEMG. Demographic information about these participants is provided 
in Extended Data Fig. 8f–i.

All closed-loop experiments were structured into three blocks: prac-
tice block, evaluation block 1 and evaluation block 2. During the practice 
block, the participants were explicitly instructed to explore performing 
the required gestures/movements in different ways to understand how 
to best perform the task. During the evaluation blocks, the participants 
were instructed to be as fast and accurate as possible.

Coaching. During the practice block of online experiments, we pro-
vided explicit verbal and demonstrative coaching to guide the partici-
pants towards styles of movement that were known to be well-suited for 
the given sEMG decoder. For the wrist decoder and discrete-gestures 
decoder, coaching was provided for about 20–25% of participants, who 
did not perform the gestures as expected; for example, by pronating 
their forearm while flexing their wrist, or by performing thumb swipes 



too slowly. For the handwriting decoder, we found that initial coaching 
was given to the majority (around 80%) of participants as they tended 
to write individual characters slowly and deliberately, a style that did 
not always trigger the sEMG decoder. We explicitly instructed these 
participants to write faster and more smoothly, as if they were writing 
with a pen. For some participants, it was also useful to explore a few 
different postures to facilitate writing in this style despite the lack 
of a pen and paper. During the evaluation blocks, further coaching 
was only provided when necessary if the participant was stuck on a 
given trial, for example, if a participant could not complete a given 
gesture in the discrete grid navigation task or could not write a given 
word or character in the handwriting task. We found that this was only 
necessary for a minority of participants with the discrete gestures and 
handwriting decoders. For the wrist decoder, we also instructed users 
to make quick wrist deflections whenever they observed significant 
drift between the decoder’s predictions and their perceived wrist angle. 
Such quick deflections tended to fix this drift and allow the participant 
to proceed at higher performance. Any time spent on this is subsumed 
in the acquisition time and dial-in time metrics.

Wrist. To evaluate continuous closed-loop control with the wrist de-
coder, users first completed a calibration procedure (rapid wrist flex-
ions and extensions) to determine their minimum and maximum wrist 
angle velocities predicted by the decoder, vmin, vmax. Model outputs, vt, 
were then normalized to these values using a normalization function, ηt, 
and scaled by a constant velocity gain, gv, and handedness normaliza-
tion parameter, h. To estimate the cursor position, we integrated the 
velocity starting from x0 = 0 at the start of the session to determine the 
unbounded horizontal cursor position, ∼xt, and the cursor position 
bounded by the edges of the workspace, xt:
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where Θ(⋅) is the Heaviside function. We used gain gv = 0.75 normalized 
pixels per radian (determined empirically to work well for comfortable 
closed-loop control) and set h = 1 if the sEMG wristband is on the right 
hand (so that wrist flexion/extension maps to left/right, respectively) 
and −1 if it is on the left hand (so that wrist flexion/extension maps to 
right/left, respectively). The second equation ensured that the hori-
zontal cursor position, xt, was bounded to the left and right edges of 
the workspace, −1 and 1.

Before engaging in the online evaluation task, the minimum and 
maximum wrist angle velocities obtained from the calibration proce-
dure were verified by asking the user to move the cursor in an empty 
workspace. If they were unable to hit the edges of the workspace, the 
calibration procedure was repeated to get a better estimate of vmin, vmax. 
This was necessary for 3 out of 17 participants.

We evaluated cursor-control performance using the same horizontal 
cursor-to-target task described under the ‘Wrist corpus’ section above. 
In brief, in each trial, the participant was prompted to move the cursor 
to 1 out of 10 equally sized rectangular targets presented on a horizon-
tal grid, with the outer edges of the leftmost and rightmost targets 
touching the left and right edges of the workspace (±1). A target was 
acquired by hovering over it for 500 ms (Fig. 3a, Extended Data Fig. 7a 
and Supplementary Video 1). Once all 10 targets were acquired, a new 
set of 10 targets was presented, and each one was prompted in a random 
sequence. This was repeated 5 times in each block, for a total of 50 tri-
als per block, where one trial corresponds to one target presentation 
and acquisition. The cursor position was continually decoded from 
sEMG throughout the session and never reset between trials or blocks.

We first quantified performance using the acquisition time per trial, 
which is the time taken to acquire the target, not including the 500 ms 

hold time. In other words, the acquisition time is the trial duration 
minus the 500 ms hold time. All trials with acquisition times below 
200 ms were discarded (29 out of 2,550 trials, or 1.1%), as this is below 
typical human reaction times88. Such trials sometimes occurred when, 
by chance, the next prompted target happened to be immediately 
next to the current cursor position and the cursor happened to be 
moving in that direction. Figure 3d shows the mean acquisition time 
over all non-discarded trails in each block, for each participant. Note 
that this average is over trials with varying starting distances from the 
target. In Extended Data Fig. 8a, we further examine performance in 
this task using Fitts’ law throughput89, which accounts for trial-to-trial 
differences in reach distances and has been previously used in HCI90 
and BCI settings5.

An additional measure that we used to quantify performance was the 
dial-in time (Fig. 3e), which is a measure of precise control around the 
target, adapted from the BCI literature91. Dial-in time was measured as 
the time from the first target entry to the last target entry, not includ-
ing the 500 ms target hold time. Figure 3e shows the mean dial-in time 
over all non-discarded trials in which the cursor prematurely exited the 
target before completing the 500 ms hold time (that is, trials in which 
the dial-in time was greater than 0).

Discrete gestures. To evaluate the discrete-gesture decoder, we used 
a discrete grid navigation task in which each of the thumb swipes (left/
right/up/down) was used to move a yellow circular character, named 
Chomper, along a discrete grid (Fig. 3b, Extended Data Fig. 7b and 
Supplementary Video 2). Movements were prompted with a series of 
targets indicating the direction in which Chomper should move and, 
every few steps, the participant was prompted to perform one of the 
three ‘activation’ gestures: thumb tap, index hold or middle hold.

A given gesture detection was triggered whenever the model output 
probability of a given gesture rose above a threshold value of 0.5. As in 
the offline setting, these gesture detections were filtered by debouncing 
and state machine filtering. The only differences with the offline setting, 
were that the state machine (1) removed release gestures preceded by 
any event other than the corresponding press and (2) synthetically 
added a corresponding release gesture whenever a press event was fol-
lowed by any event other than the corresponding release. Index/middle 
holds were defined as a press followed by a release at least 500 ms later.

We defined a ‘trial’ as a randomly sampled sequence of targets and 
activation prompts requiring 8 thumb swipes and 5 activations. If the 
model detected a thumb swipe in the wrong direction, Chomper would 
move in the detected direction and the participant would therefore 
be prompted to swipe in the opposite direction to move Chomper 
back to its previous position. The total number of prompted thumb 
swipe gestures in each trial could therefore vary depending on how 
many times the wrong thumb swipe direction was detected. Incorrect 
activation gesture detections would be indicated to the participant, 
but would not alter Chomper’s position. If, on an index or middle hold 
prompt, the release followed the press less than 500 ms later, this was 
classified as an ‘early release’ error. The participants performed ten 
trials in each block and were explicitly instructed to favour accuracy 
over speed when performing the task.

Completion rate (Fig. 3g) was defined as the minimum number of 
discrete gestures required to complete a trial (8 thumb swipes + 5 acti-
vations = 13 gestures) divided by the time required to complete a trial. 
Mistakenly making additional gestures that were counterproductive to 
completing the trial added to the time required, but did not increase 
the number of required gestures. To calculate the confusion matrix for 
each participant, we counted the number of times that each gesture was 
detected when a given gesture was expected. To get a proportion, we 
then divided this by the total number of gestures executed when that 
given gesture was expected. Figure 3h shows the average confusion 
matrix across all participants, using the trials in the two evaluation 
blocks only. The first hit probability (Fig. 3f) was calculated by taking 
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the proportion of prompted gestures in which the first executed ges-
ture was the expected one. For both the first hit probability and the 
confusion matrix metrics, we included the 13 prompted gestures in 
each trial as well as any additional prompted thumb swipes resulting 
from swiping in the wrong direction.

Note that, to complete the discrete-gesture task, the participant 
was required to perform all gestures correctly. Therefore, before this 
task began, all of the participants were screened to confirm that each 
gesture worked for them; however, no participants had prohibitive 
issues with any gesture.

Handwriting. To evaluate the handwritten character decoder in a closed 
loop, we used a handwriting task in which, in each trial, the participants 
were prompted to handwrite a five-word phrase randomly sampled 
from the Mackenzie corpus92. Characters ([a-z], [0-9], [space], [,.?'!_]) 
and a single gesture ([space]) were decoded online with the decoder 
and displayed to the participant in real time (Fig. 3c, Extended Data 
Fig. 7c and Supplementary Video 3). The participants were instructed 
to ensure that the decoded phrase was understandable before submit-
ting it and moving on to the next trial. If the participant produced any 
incorrect characters, they could use the backspace key on the keyboard 
to erase errors and then rewrite them. Trials were completed when the 
participants made their best attempt to write the prompted phrase and 
then submitted the written text by pressing a key on the computer key-
board using their non-dominant hand. Each block consisted of ten trials.

In our analysis, we report the median CER and WPM over all trials in 
each block. For each trial i, we calculate the CER according to a previ-
ous study33:

CER =
edit_distance

max{prompt_length , output_length }
,i

i

i i

where edit_distancei is the Levenshtein distance between the prompt 
and the model output submitted by the user in trial i, prompt_lengthi is 
the length of the prompt and output_lengthi is the length of the model 
output. The maximum between these two is used in the denominator 
to ensure that the CERi is between 0 and 1. For WPM, we assume an 
average of 5 characters per word (including spaces), so we determine 
the number of words in each prompt by counting the total number of 
written characters and dividing this by 5. We measured the prompt 
duration with the time elapsed between the first and last character 
emission from the model during that trial, to remove any time spent 
reading the prompt or clicking the submit button to advance onto the 
next prompt.

For each user and block in Fig. 3i,j, we calculate the CERi and WPM 
independently for each trial and report the median over trials. Note 
that this online CER metric is therefore not directly comparable with 
the offline CER metric reported in Fig. 2g, which was calculated by 
aggregating errors over all prompts (see the ‘Handwriting’ part of the 
‘Generic sEMG decoder modelling’ section). Computing the median 
over trials was necessary for quantifying online performance due to 
the presence of outlier trials with poor performance (for example, 
due to accidentally pressing the submit button before completing the 
prompt), which had an outsize influence on the aggregate number of 
errors in each block due to the small sample size of ten trials per block.

Generic sEMG decoder baselines
Wrist. As baseline performance for the sEMG wrist decoder (Fig. 3d,e 
(dashed red line)), we used horizontal cursor-to-target task perfor-
mance from the wrist corpus, in which the cursor was controlled by the 
ground truth wrist angle tracked through motion capture (see the ‘Wrist 
corpus’ section). This offers a behaviourally controlled comparison for 
our EMG model because it uses the same instructed wrist movement. 
The cursor position was determined by scaling the normalized and 
centred ground truth flexion/extension wrist angle by a constant gain. 

For our baseline, we use the cursor-to-target task with the horizontal 
target configuration and a gain of 2.0, as we found performance was 
slightly higher than with the larger gain of 4.0.

For each metric in Fig. 3d,e, we calculate the mean over all 50 trials 
for each participant in the wrist corpus (n = 162) and report the median 
over participants. This pool of participants is non-overlapping with the 
participants who performed the sEMG wrist decoder online evaluation 
task. For those participants who recorded multiple datasets, we used 
only the data from the first session and discarded the second session, 
to eliminate learning effects from having been previously exposed to 
the task. Note that performance may therefore be slightly lower than 
it would be after more extensive practice, as in the case in the online 
evaluation experiment where participants performed a practice block 
of 50 trials before performing the evaluation blocks.

To contextualize wrist-based control performance with a more con-
ventional interface, we also measured performance on this task using 
a MacBook trackpad. In this case, the cursor’s horizontal position was 
set to that of the native laptop mouse controlled by the trackpad, with 
default trackpad settings. The vertical position of the cursor was fixed 
to the height of the targets at all times. The same n = 17 participants who 
performed the wrist decoder online evaluation study subsequently 
performed 50 trials of the same cursor-to-target game under trackpad 
control, and we measured metrics over these 50 trials to obtain the 
baseline values reported above. Note that participants therefore had 
150 trials of experience with this task (while using the sEMG wrist angle 
decoder) before performing it with the trackpad.

Discrete gestures. As the baseline performance for the discrete-gesture 
decoder, we used performance on the discrete grid navigation task 
using a commercially available Nintendo Switch Joy-Con controller. 
This device enables us to evaluate the baseline performance without 
an sEMG decoder while still requiring similar one-handed motions to 
those required by the discrete-gesture decoder. We mapped controller 
buttons to the discrete gestures used in the task as follows: left/right/
up/down thumb swipes were replaced by analogous joystick move-
ments, thumb taps were replaced by pressing the ‘b’ button just above 
the joystick, and index and middle press and release were replaced 
by upper and lower bumper press and release, respectively. To avoid 
simultaneous inputs, no other gestures were decoded after a button 
press until that button was released. Left/right/up/down joystick move-
ments were detected any time the joystick x or y value exceeded 15% 
of its maximum value. Once a joystick movement was detected, the 
total distance travelled along the x and y axes was compared and the 
direction of the movement was determined from the axis with greater 
distance travelled. While all interactions were one-handed, the Joy-Con 
controller was mounted in a commercially available Nintendo Switch 
Joy-Con grip, to allow participants to hold the controller with two hands 
if this improved their comfort.

A different set of n = 23 participants performed this task, non- 
overlapping with the participants who performed the sEMG discrete- 
gesture decoder online evaluation task. Apart from changes to 
controller-specific prompts and instructions, the discrete grid navi-
gation task and performance metrics used were otherwise identical 
to those for the sEMG discrete-gesture decoder. The participants were 
also screened to confirm that each button worked for them, following 
exactly the same procedure as for the EMG decoder. As baseline values 
in Fig. 3f,g, we used median performance in the last evaluation block, 
which we found to be the block with highest performance (Extended 
Data Fig. 8b,c).

Handwriting. To generate a baseline of handwriting speed, we calcu-
lated how fast people wrote during the ‘phrases’ portion of offline data 
collection used for training and testing the Handwriting model (see the 
‘Handwriting corpus’ section). We used a set of n = 75 participants for 
this purpose, non-overlapping with the participants who performed 



the sEMG handwriting decoder online evaluation task. Each of these 
participants were prompted to handwrite a selection of phrases on top 
of a Sensel Morph touch surface device, without a pen. This device was 
used to measure the time taken to write a prompt, by using the time 
elapsed between the first touch on and last lift off the surface over the 
duration of the prompt. Using only the prompt start and end times  
resulted in a lower WPM (21 WPM), reflecting the latency for a partici-
pant to initiate writing after a prompt appeared and to advance to the 
next prompt once complete. For consistency with the WPM metric 
used to evaluate the sEMG decoder, we counted the number of words 
in a prompt by counting the total number of characters (including 
spaces) and dividing by 5.

Discrete-gesture detection model investigation
Network convolutional filter analysis. To examine the initial Conv1d 
layer of the trained discrete-gesture decoder, we first measured various 
spatiotemporal properties of each of the Conv1d filter weights. Each 
filter is a spatiotemporal weight matrix of shape 16 input channels × 21 
timesteps. It produces one output feature by convolving each row 
of the weight matrix with the corresponding sEMG-RD channel and 
summing the outputs over the rows. Below, we refer to each row as an 
input channel.

We first measured the RMS power of each input channel and identi-
fied the input channel with maximum power. We then measured the 
temporal frequency response of this max input channel using a discrete 
Fourier transform and identified the peak frequency with strongest 
magnitude response. We measured the bandwidth of the temporal 
frequency response as the range of contiguous frequencies around 
this peak that had a magnitude response within 50% of the peak. We 
additionally counted how many input channels had RMS power within 
50% of the max channel. The distributions of these metrics across all 
Conv1d filters are shown in Extended Data Fig. 9.

We next identified the set of Conv1d filters that fell within the inter-
quartile range of these three metrics (peak frequency, bandwidth, 
number of active channels), and randomly selected six filters with 
different peak channels. These are the representative examples shown 
in Fig. 4b,d,e. The six putative MUAPs shown in Fig. 4c were extracted 
using the procedure described in the section ‘Putative motor unit 
action potential waveform estimation’ and Extended Data Fig. 2, 
and then the raw EMG signal in the central 10 ms of each snippet was 
high-pass filtered with the same preprocessing procedure applied to 
the discrete-gesture model training data (see the section ‘Architecture’ 
under ‘Generic sEMG decoder modelling’). This allowed a direct com-
parison with the 10 ms convolutional filters trained on data preproc-
essed in this way. The same procedure for measuring RMS power and 
frequency response was applied to the six putative MUAPs after this 
preprocessing to obtain the curves shown in Fig. 4d,e.

Discrete-gesture detection network LSTM representation analysis. 
To examine the LSTM representations of the trained discrete-gesture 
decoder, we used recordings from 3 different sessions from each of 50 
randomly selected users from the test set. From each of these record-
ing sessions, we randomly sampled forty 500 ms sEMG snippets ending 
at labels for each gesture class (after label timing alignment; see the 
‘Discrete-gesture time alignment’ section), for a total of 40 × 9 = 360 
sEMG snippets per session. We then passed each of these snippets 
through the trained discrete-gesture decoder, with the LSTM state 
initialized to zeros, to obtain vector representations, X ∈ R512, of each 
snippet. PC projections of the vectors from three randomly selected 
users are plotted in Fig. 4f–h, in each case coloured by a different  
property. Gesture-evoked sEMG power was measured as the RMS of 
the last 100 ms of each sEMG snippet. For each participant and gesture, 
this was then binned into 20 bins with a matched number of snippets, 
dividing the sEMG power into the categories plotted in Extended  
Data Fig. 8l.

To quantify the structure in these representations, we used the pro-
portion of variance in LSTM representations accounted by a given 
variable, ξ:

E X ξ XVar [ [ ]]/Var [ ].ξ X X

The numerator is the variance in the mean representations of each 
category of ξ, and the denominator is the total variance of the rep-
resentations. In each case, variance is calculated as the trace of the 
covariance of the representations. For the discrete-gesture identity 
and participant-identity analysis, we divided the 50 participants into 
10 non-overlapping sets of 5 participants and calculated the proportion 
of variance separately for each set. The curves in Fig. 4i show the mean 
and 95% confidence interval over these 10 sets. For the band placement 
and gesture-evoked sEMG power curves, the proportion was calcu-
lated separately for each of the 50 participants, and the mean and 95% 
confidence interval over participants was shown. For this analysis, the 
sEMG power was binned as indicated above but into only 3 bins (low/
medium/high) rather than 20.

Personalized modelling
We studied the personalization of handwriting models with 40 par-
ticipants from the test corpus that were held out from the 6,527 par-
ticipants in the pretraining corpus. For each participant, we further 
trained, that is, fine-tuned, a chosen generic handwriting model on a 
fixed budget of data solely taken from that participant’s sessions. The 
resulting personalized model was then evaluated on held-out data from 
the same participant on whom it was personalized. We considered 
personalization data budgets of 1, 2, 5, 10 and 20 min. We repeated this 
process for each of our 40 participants and reported the population 
average of the personalized model performance.

Data. We created a training and testing set for each of our 40 personali-
zation participants by holding out three sessions for the test set, with 
each session containing data collected in one of the three postures 
(seated writing on a surface, seated writing on their leg and standing 
writing on their leg). The remaining sessions for that user were included 
in the training set, subsampled to obtain the desired number of min-
utes of labelled sEMG recording. The subsampling was done through 
random uniform sampling of the prompts from all of the sessions  
in the training set. Each subsample of the full training set was a super
set of the preceding data budget size, ensuring that the prompts  
in the 1 min budget were also present in the 2 min and 5 min budget, 
and so on.

Optimization. The optimization details closely resemble the proce-
dure followed for generic training (see the ‘Handwriting’ section under 
‘Generic sEMG decoder modelling’) with a few differences. We used a 
cosine annealing learning rate schedule without warmup. We also varied 
the fine-tuning learning rate as a function of the number of pretrain-
ing participants used to pretrain the upstream generic model, such 
that: LR(N) = 1.24 × 10−5 × N−0.42, with N being the number of pretrain-
ing participants. The learning rate relationship with generic pretrain-
ing participants was found through grid learning rate sweeps for the 
models pretrained on 25, 400 and 6,527 participants, then fitting a 
power law to the population average performance minima found. We 
did not use weight decay during fine-tuning. We fine-tuned the model 
for 300 epochs, at a batch size of 256, with no early stopping such that 
the training is always 300 epochs.

Statistics. In Fig. 5e, we found negative transfer of personalized models 
across participants. To characterize each participant’s performance on 
other fine-tuned models, we first computed the mean of each row with-
out the diagonal. We then computed the median of the means along with 
the s.e.m. This was compared with the median of the diagonal values.
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In Extended Data Fig. 10, we added early stopping to the person-

alization procedure to disambiguate the contribution of increased 
personalized data budget per user from an increase in the number of 
fine-tuning iterations. We found very similar results with (Extended 
Data Fig. 10) and without (Fig. 5) early stopping, except that a few of 
the best performing users exhibited regressions from personalization 
without early stopping. This verified that the benefits from including 
more personalization data were not due to an increase in training itera-
tions. Note that, in practice, early stopping would require additional 
data from the participant to use for validation. Here we used the test 
set for early stopping, so the results in Extended Data Fig. 10 should 
be considered validation numbers.

Personalization scaling laws
Fitted function. In Fig. 5b, we show the fits of the 60.2 million parameter 
model error rate as a function of the number of pretraining participants 
for the generic model and for each personalization data budget. We 
used a simple power law fit with respect to pretraining data quantity 
(N, number of pretraining participants), such that:

Er e A N= + / .α

We did not include the contribution from model size, as we only fit-
ted observations from a single model size (the error from finite model 
size was therefore absorbed into e).

Fitting procedure. The fitted parameters for each personalization 
data budget were obtained by minimizing the MSLE using the L-BFGS-B 
optimization algorithm86 along with 200 iterations of the basin hopping 
strategy87. The initial guess and the bounds for the fitted parameters 
are shown in Supplementary Table 2.

Personalization equivalence calculations
Relative increase calculation. To determine the equivalent pretraining 
participant budget needed to match a given personalization perfor-
mance, we needed a continuous estimate of generic model perfor-
mance as a function of the number of pretraining participants. For 
this, we used logspace piecewise linear interpolation of the generic 
performance values, which we denote by fgeneric(N). Given the num-
ber of pretraining participants, N, and personalization minutes, m, 
personalized models have an observed CER given by CER(N,m). To 
find the equivalent additional pretraining participants ΔN needed 
to match performance between generic and personalized models 
we set fgeneric(N + ΔN) = CER(N,m) and solve for ΔN using the Newton 
conjugate-gradient method. This gives the points in Fig. 5d. Overlaid 
on the plot as dotted lines, we used the power law fit of the points cor-
responding to each number of personalization minutes in Fig. 5b to 
infer continuous curves of equivalent fold-increase in pretraining data 
required using the approach described above.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We have publicly released 1,060 sEMG recordings from 300 partici-
pants spanning the 3 tasks in the study: 100 participants (74 h) of wrist 
data, 100 participants (63 h) of discrete gestures data and 100 par-
ticipants (126 h) of handwriting data. Each participant was randomly 
selected from the set of training users described in the study. We also 
provide labels, gesture times and regression targets for these data-
sets. All data are anonymized and contain no identifying information. 
The data are hosted online (https://fb-ctrl-oss.s3.amazonaws.com/
generic-neuromotor-interface-data).

Code availability
We have also published a GitHub repository (https://github.com/face-
bookresearch/generic-neuromotor-interface-data) with implementa-
tions of the models described in the manuscript for wrist, handwriting 
and discrete gesture tasks. We also provide a framework for training and 
evaluating models on the data that we have released. Data and code are 
available under a Attribution-NonCommercial-ShareAlike 4.0 license. 
Instructions for downloading the data, training models and evaluating 
models can be found in the site’s README file.
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Extended Data Fig. 1 | Schematic and anatomical interfacing of sEMG 
Research Device. a, The sEMG Research Device electrical system architecture. 
The sEMG-RD uses 48 pogo-pin style round electrodes in order to provide good 
comfort and contact quality. The 48 channels are configured into 16 bipolar 
channels arranged proximo-distally, with the remainder electrodes serving as 
either shield or ground. Each electrode is 6.5 mm in diameter (gold plated 
brass). For each differential sensing channel (16 in total), centre-to-centre 
spacing between paired sensing electrodes is 20 mm. The sEMG-RD has low 
noise analog sensors with input-referred RMS noise of 2.46 μVrms, measured 
during benchtop testing with differential inputs shorted to their mid-point 
voltage. With analog sensors’ nominal gain value of 190 and Analog to Digital 
Converter’s (ADC) full-scale range of 2.5 V, the sEMG-RD offers a dynamic range 
of approximately 65.5 dB. Each channel is sampled at 2000 Hz. The Inertial 
Measurement Unit (IMU) functional block includes sensors of 3-axis 
accelerometer, 3-axis gyroscope, and 3-axis magnetometer sampled at 100 Hz. 
We note that the IMU was not utilized for any online or offline experiments 
described in this manuscript. The microcontroller facilitates the transfer of 
unprocessed data from all ADCs and IMU directly to the bluetooth radio. No 
skin preparation or gels are needed for using the sEMG-RD, because its analog 

sensors have very high input-impedance — approximately 10 pF capacitance  
in parallel with 10 TOhm resistance — providing excellent signal robustness 
against large variations of electrode-skin impedance among the population.  
b, Computer-aided design rendering of the sEMG-RD. The mechanical 
architecture consists of a kinematic chain with flexible joints connecting  
16 pods that house the pogo-pin style electrodes that comprise the sEMG 
channels. This enables broad population coverage in maintaining consistent 
quality contact between the dry electrode and skin. Since each differential 
sensing channel is placed along the proximal-distal direction, the device  
is able to maintain symmetry with respect to wrist anatomy and provide 
generalizability across right and left hands, as long as the wearer keeps the gap 
location on the ulna side. c, Anatomical depiction of electrode locations 
relative to relevant muscle and skeletal landmarks, adapted from a public 
domain image93. Pink overlays cover muscles that predominantly control the 
wrist, blue overlays cover muscles less involved in wrist control, red overlays 
cover blood vessels and yellow overlays cover nerves. The green diamond 
indicates the position of the electrode gap. Note the gap that arises between 
channels 0 and 15, due to variation in wrist circumference and elasticity between 
compartments, is aligned with the region of the wrist where the ulna is located.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Extraction and validation of putative MUAPs.  
a-b, To evoke putative MUAPs, one participant followed a series of prompts 
instructing the execution of various low-force muscle contractions 
interspersed with periods of rest. To facilitate generating sparse and spatially 
focal EMG signals, the participant was provided visual feedback about the raw 
EMG on a manually selected channel during prompted rest (a) and movement 
(b) epochs. Each epoch lasted 10 s and was repeated three times. High-pass 
EMG on all channels (top) and on the manually selected channel (12) for visual 
feedback (middle) during a prompted rest epoch during data collection for 
putative thumb extension MUAPs. Grey vertical scale bars indicate 20 μV. 
MUAPs on any channel were detected using peak finding on the channel-
averaged rectified and smoothed EMG (see Methods). The timings of detected 
MUAPs were used to construct a spike train capturing the activity of this multi-
unit activity, whose instantaneous firing rate was computed by taking the 
inverse of each event’s interspike interval (ISI) in seconds (bottom). c, Mean 
instantaneous firing rates (computed as the total number of detected MUAPs 
over the epoch duration) during rest and movement epochs for each tested 

movement (IF: index flexion; MF: middle flexion; PE: pinky extension; TAb: 
thumb abduction; TE: thumb extension; WP: wrist pronation). Each sample 
corresponds to one prompt (rest or move) epoch. d, Coefficient of variation 
(CoV) during the prompted movement periods. CoV was computed as the 
standard deviation of interspike intervals (b; bottom) normalized by their 
mean. e, Multi-channel waveforms for putative MUAPs extracted during the 
prompted movement epochs for each action. For visualization, MUAPs for  
each movement were normalized by the 99.95th percentile of the absolute 
maximum (over samples and channels) of each MUAP. Thin lines correspond  
to individual MUAPs (total number detected indicated as n) and thick lines 
correspond to the median waveform over MUAPs for each movement. Each 
waveform is 20 ms long. Vertical scale bars indicate 20 uV. f, MUAP spatial 
profiles. The spatial profile for each MUAP was constructed using the peak-to-
peak value of the waveform on each channel. The mean (solid line) and standard 
error (shading; nearly within solid lines) of the spatial profiles are shown for 
each movement. Angular locations represent approximate channel locations 
around the wrist (indicators) and the radii represent the peak-to-peak value.
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Extended Data Fig. 3 | Anthropometric and demographic features of  
sEMG datasets. a, The number of participants in each corpus. b-e, Histograms 
of anthropometric characteristics of all participants (n = 11,236): (b) wrist 
circumference, (c) self-reported age, (d) BMI calculated from self-reported 
height and weight, and (e) self-reported height. The irregularity in the 
histogram of self-reported age is likely due to participants rounding their age to 
nearby values. We measured wrist circumferences with a standard measuring 
tape at the wrist just below the ulnar styloid process where the participants are 

expected to don the band. Values outside of the range of 10–30 cm were 
truncated. We calculated BMI as the weight (in kilograms) divided by height  
(in metres) squared. f-i, Distributions of the demographic characteristics 
across all participants (n = 11,236): (f) dominant handedness, (g) self-reported 
proficiency at typing on a computer keyboard, (h) self-reported gender, and  
(i) arm exercise frequency, chosen from one of the following options: Never 
(never), Less than once per week (rarely), 1-2 times per week (occasionally), 
more than twice per week (often).



Extended Data Fig. 4 | Examples of prompting used to collect training data 
for the three tasks. a, Time series of example prompter frames from the open-
loop task used to collect training data for the wrist decoder. The participant 
was instructed to make wrist movements following a cursor (pink circle) 
making centre-out movements. For the user to be able to preempt the direction 
of the cursor movement, a line emanated out from the cursor to indicate the 
direction it was going to move to before subsequently moving. b, Time series  
of example prompter frames from the cursor-to-target closed-loop control 
task used to collect training data for the wrist decoder, with the 2D target 
configuration. In this task the participant was prompted to move the cursor to  
a highlighted target (light blue rectangle in panel labelled t0). When the cursor 
(red) landed on the target, a short timer began, marked by the black fill of the 
cursor and black border of the target region (panel t3). In this trial, the cursor 
was held on the target for 500 ms to complete the timer, so the target was 
acquired and therefore disappeared as the next target was prompted (light 
blue rectangle in panel t4). c, Example prompter from the smooth pursuit 
closed-loop control task used to collect training data for the wrist decoder. 
 In this task the participant was instructed to move the cursor (red) to follow a 
target (black) moving in a randomly sampled smooth trajectory. d, Example  
of prompting for open-loop task used to collect training data for the discrete 
gesture recognizer. A series of gestures to be performed are depicted, with 

colours and labels corresponding to the gesture type. Gestures were separated 
by blank intervals in which no gesture was to be performed. Prompts scroll 
from the right of the screen to the left. Participants were instructed to perform 
each gesture when the corresponding prompt reached the indicator line 
(highlighted with an arrow) – either instantaneous gestures such as finger 
pinches or thumb swipes that are depicted as single lines, or held gestures such 
as index and middle holds that are depicted as solid bars. Participants were 
instructed to release held gestures when the indicator line reached the end of 
the rectangle. Gestures that have already been prompted are shown in grey.  
e, Detailed example of prompting during holds. At t0 an index hold gesture 
prompt appeared on the right side of the screen, with the time indicator line in 
white. At t1 the gesture prompt reached the time indicator, and the hold prompt 
changed colour to indicate the hold should be performed by the participant. 
At t2 the hold was no longer selected by the indicator bar and turned grey, 
indicating that the participant should release the hold. f, Example prompter 
shown during the handwriting task. The screen instructed the participant to 
write “how was your day” with their hand on the surface of the table, while 
seated. g, During the experimental session, different prompts, including 
numbers and punctuation, were shown, ranging from single characters to full 
sentences. Besides writing on a desk surface, the participant was also asked to 
perform handwriting on their leg while standing and on their leg while seated.
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Extended Data Fig. 5 | sEMG event similarities and single-participant sEMG 
decoder generalization performance. a, Purple: cosine similarity between 
individual sEMG activations of a given gesture and the sEMG template 
(event-triggered average) for that gesture. From left to right: cosine similarities 
are plotted for all events within a single session (single band placement), across 
all sessions of a single participant, or across all sessions from all participants 
from Fig. 2a (100 sessions, 5 from each of 20 users). While similarity was 
relatively high within a single band placement, sEMG activations became 
progressively more distinct across different band placements and individuals. 
Orange: same, except for the cosine similarity of one gesture compared to the 
template for a distinct gesture. These were lower than similarity within the 
same gesture, irrespective of whether the grouping was done over a single  
band placement or across the population. Differences shown across sessions, 
participants and gestures are representative for all gestures and pairs of 
gestures. Boxes show median, lower quartile, and upper quartile, with whiskers 
extending to ±1.5×IQR. b, For each held-out individual, the fraction of other 
single-participant models in the discrete gesture detection task (Fig. 2c,d) that 

outperform that individual’s own model (i.e. had lower FNR). For all except two 
participants, none of the other single-participant models outperformed their 
own model. All the results in panels b-d are based on n = 100 single-participant 
models, each trained on 4 sessions from that participant. c, For each pair of 
participants, we computed the FNR of each participant’s model on data from 
every other participant. We embedded the resulting distance matrix in 2D 
using t-SNE. Qualitative inspection of t-SNE embeddings reveal no prominent 
similarity structure. d, Scatter plot comparing each person’s model’s average 
offline performance on every other participant’s data (donor FNR, x-axis) 
against the average performance of other participant’s models on that person’s 
held-out session (receiver FNR, y-axis). The dashed line shows x = y. There is  
not a significant Pearson correlation between the donor and receiver score 
(r = 0.11, p = 0.26, two-sided test, n = 100 participants). All models show high 
FNR, and the lack of correlation indicates that the generalizability of a given 
participant’s model to other individuals is not predictive of the other individual’s 
model’s generalizability to that participant.



Extended Data Fig. 6 | Multivariate power frequency features improve 
wrist decoder performance over root mean square power features. 
Decoding error of 4.4 M parameter wrist decoders trained to predict wrist 
angle velocity from MPF EMG features (black) or root mean square power EMG 
features (gold). Each dot shows mean +/- SEM decoding error evaluated on a 
fixed test set of held-out participants (n = 22), following the same conventions 
as in Fig. 2e. Asterisks below each pair of points indicate p < 10−4, two-tailed 
paired sample Wilcoxon signed-rank test. Root mean square power EMG 
features were calculated by first rescaling and high-pass filtering the EMG 
signal as in the MPF features (see Methods) and then taking the root mean 
square of each channel in a rolling window of length 200 samples (100 ms) 
strided by 40 samples (20 ms). The reduced dimensionality of these features 
(16 dimensions, as opposed to 384) implied a smaller number of input 
dimensions to the fully connected layer in the rotational-invariance module, 
which we compensated for by increasing the number of hidden dimensions 
from 512 to 600 to keep the total parameter count at 4.4 M.
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Extended Data Fig. 7 | Example screenshots of closed-loop evaluation 
tasks. a, Screenshots from an example trial of 1D horizontal cursor control 
task, in which the participant was prompted to reach to the rightmost target  
(in panel labelled t0, light blue rectangle). When the cursor (red) landed on  
the target, the target was marked with a black border and a short timer began, 
marked by the black fill of the cursor (middle panel, t1). In this trial, the cursor 
was held on the target for 500 ms to complete the timer, so the target was 
acquired and therefore disappeared as the next target was prompted  

(right panel, t2). b, Screenshots from an example sequence in the discrete grid 
navigation task, in which the participant was prompted to perform (from left to 
right, marked as t0-t4): thumb swipe up, index hold, thumb swipe right, thumb 
swipe right, middle hold. c, Screenshots from an example trial in the handwriting 
task, in which the participant is prompted to write the phrase “example flashing 
red light means” (top) and the handwriting decoding model output in response 
to the participant’s behavior in the handwriting task (below).



Extended Data Fig. 8 | Additional online evaluation metrics. a, Mean Fitts’ 
law throughput on the 1D horizontal cursor control task. Throughput is 
defined as the index of difficulty divided by acquisition time, with the index of 
difficulty defined as in5: d wlog (1 + / )i2 , where di is the distance to the target at 
the start of trial i and w is the target width. Each box shows the distribution  
of trial-averaged throughput over participants (n = 17), following the same 
conventions as Fig. 3d,e. Throughput significantly improved from the practice 
block to the evaluation blocks (p < 0.005, two-tailed Wilcoxon signed-rank 
test), indicating learning effects consistent with the improvements in 
acquisition time and dial-in time shown in the main text. Dashed red line and 
shading shows median and 95% confidence interval of the performance of a 
different set of n = 162 participants controlling the cursor with ground truth 
wrist angles measured via motion capture (see Methods). Dashed orange line 
and shading shows median and 95% confidence interval of the performance  
of the same n = 17 participants controlling the cursor with MacBook trackpad 
(see Methods). For each baseline, confidence intervals for medians were 
calculated using the reverse percentile bootstrap. b-d, Performance on the 
discrete grid navigation task with Nintendo Switch Joy-Con controller (n = 23 
participants). (b) Fraction of prompted gestures in each block in which the first 
gesture detected by the model was the correct one (out of 130 total prompted 
gestures in each block), as in Fig. 3f. This value was used as the baseline in Fig. 3f. 

(c) Mean gesture completion rate in each task block, as in Fig. 3g. This value  
was used as the baseline in Fig. 3g. (d) Discrete gesture confusion rates in 
evaluation blocks, averaged across participants, as in Fig. 3h. Confusion rates 
are expressed as a percent of instances in which the corresponding gesture  
was expected (across rows). Note that, despite using a commercially available 
and widely used controller, confusion rates remain non-zero, reflecting 
behavioural errors. e, Distribution of subjective impressions about the 
reliability of each EMG decoding model. At the end of each online evaluation 
task, participants were asked to respond to a multiple choice question about 
how reliably their intended action was detected. For the discrete gestures task, 
they were asked to answer this question separately for each of the thumb swipe 
directions and “activation” gestures. f-i, Demographics of participants that 
performed the online evaluation tasks for the wrist decoder (n = 17), discrete 
gestures decoder (n = 24), and handwriting decoder (n = 20): (f) self-declared 
gender, (g) self-declared dominant hand, (h) self-declared age, (i) measured 
wrist circumference. For all boxplots, boxes show median, lower quartile, and 
upper quartile, with whiskers extending to ±1.5×IQR. Any values beyond these 
are marked with open circles. One and two asterisks respectively indicate 
p < 0.05 and p < 0.005, and “ns” indicates “not significant” (p > 0.05); two-tailed 
paired sample Wilcoxon signed-rank test.
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Extended Data Fig. 9 | Spatiotemporal properties of all discrete gesture 
decoder convolutional filters. a, Index of channel with max root mean square 
(RMS) power (n = 512 convolutional filters). Here and in all other panels in this 
figure, the triangles at the top mark the values of the 6 example convolutional 

filters from Fig. 4b (blue triangles) and the 6 example putative MUAPs from 
Fig. 4c (orange triangles). b, Number of channels with RMS power within 50%  
of the peak channel. c, Peak frequency response of the channel with max RMS 
power. d, Bandwidth of the channel with max RMS power (see Methods).



Extended Data Fig. 10 | Influence of early stopping during personalization. 
In this figure, we employ early stopping during personalization to disambiguate 
the role of more personalization data from increased fine-tuning iterations as 
well as to mitigate regressions among the best-performing users. Specifically, 
we used mean CER on held out test data as a selection criteria for epoch-wise 
early stopping. Aside from early stopping, the setup here is identical to that in 
Fig. 5b,e,f) of the main text. Overall, results are very similar to Fig. 5 of the main 
text, indicating that the increase in personalization data is the primary driver of 
improved performance. Regressions among the best-performing users are now 
absent. Note also that we do not have separate validation and test sets, so these 
results should be understood as validation performance. a, Same as Fig. 5b of 

the main text, except with the inclusion of early stopping during fine-tuning.  
b, Same as Fig. 5e of the main text, except with the inclusion of early stopping 
during fine-tuning. Compared with Fig. 5e, transfer of personalized models  
to other participants yields overall smaller regressions likely because early- 
stopped models remain closer to the pre-trained model. c, Same as Fig. 5f of  
the main text, except with the inclusion of early stopping during fine-tuning. 
Regressions exhibited by a few of the best performing users in Fig. 5f are now 
absent due to early stopping. We show the range of Pearson correlation 
coefficients for each fit and the median p-value (two-sided test); maximum 
p-value over all fits is 0.020.
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