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Even though some commercially available 3D sketching systems already
exist, the need to develop own systems may emerge, for example in the
context of research projects, in the context of teaching, or to extend the
functionality of existing immersive systems with 3D sketching features. After
the unique characteristics of 3D sketching were presented in the previous
chapter, this chapter outlines the essential steps for generating a 3D sketch
using freehand user input. Many of the principles of 2D sketching can also
be applied to 3D and will not be repeated here. Instead, selected methods that
have proven themselves in practice in 3D are explained.

As immersive 3D sketching systems are highly interactive, all steps
must be performed in real time and post-processing approaches are not
suitable here. Besides the hardware requirements described in Section 6.1,
the following steps must be taken into account on the software side when
realising a freehand 3D sketching system:

tracking: recording the position, orientation, and states of the buttons of the
interaction devices used (see Section 6.1.2),

filtering: filtering of the input data, for example, smoothing,

sampling: transfer of the input data into an internal data structure, if
necessary removal of unnecessary supporting points,

mesh creation: creation of a representable mesh based on the supporting
points, for example by extrusion of a basic shape (brush), and

rendering: real-time representation of the mesh
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Immersive sketching systems typically provide additional features such
as deleting, editing, saving, and loading sketch entities. Since these are not
significantly different from 2D sketching, they are not discussed here. In
addition, immersive sketching systems typically have 3D menus for selecting
and parameterising specific sketching functions such as brush, colour, and
curve properties, among others. An overview of the design of 3D menus is
provided by Dachselt and Hiibner [1] and LaViola et al. [2]. Further user
interface-related guidance on processing user input to control immersive 3D
sketching systems can be found in Jackson and Keefe [3].

7.1 Filtering

As mentioned in Section 6.1.2, the input devices used in 3D sketching usually
provide data in the full six spatial degrees of freedom. Many methods for
generating stroke geometry take the orientation into account, for example, in
the creation of calligraphic sketches. Here the orientation of the interaction
device has an important influence on the resulting geometry. The filter
methods described here only refer to translational data. Filter methods also
exist for rotational data, but are much more sophisticated. Hartley et al. [4]
provide a good overview of corresponding methods. Some 3D frameworks
also offer the possibility to interpolate rotations using quaternions.

In freehand 3D sketching, input data is typically filtered for two reasons,
namely to reduce or smooth out hardware-induced noise, typically caused
by the inaccuracy of the tracking systems used, and to reduce small jittery
movements caused by the user when guiding the 3D input devices.

Smoothed user input produces much more aesthetic and satisfying
sketches than unfiltered ones. At the same time, filtering causes slight delays,
which add to the delays already caused by the tracking and rendering
system. This is especially noticeable with fast sketch movements, such as
when drawing wavy lines quickly. In AR and projection-based environments
such as CAVEs and powerwalls, users typically see the physical input
devices directly. Here, the delay is visible in such a way that during sketch
movements, the extrusion point of the virtual ink follows the position of
the physical input device or the physical pen tip at a noticeable distance.
In HMD-based systems, where users hold the interaction devices in their
hands but typically only see them as rendered 3D geometries in the virtual
environment, pen tip and extrusion point are always synchronous. On the
other hand, there can be a disturbing offset between the position of the virtual
input device and the position of the physical input device held in the hand,
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which users perceive although they cannot see the physical input device
directly, but feel where and how they are holding it [visual-proprioceptive
conflict, cf. 5].

There are several filtering methods that differ in particular in the degree
of smoothing and delay of user input!. The easiest way to filter user input
is the Moving Average Filter. This filter uses a certain number of the last
positions X,, measured by the interaction device and forms a simple average
value X,,. Although good smoothing can be achieved with this filter, the delay
increases noticeably with the number of positions considered. In addition,
sudden changes in direction of the pen guidance cannot be satisfactorily
represented by this filter. To address this problem, the Exponential Moving
Average Filter, given by Equation 7.1, can be used. This filter calculates the
filtered value X,, using a weighted average of the current position X,, of the
interaction device and the last filtered value X,,_;. The higher the weighting
factor a weights the current position, the higher the responsiveness to motion
changes, but with a lower smoothing effect.

X, =aX,+ (1 —a)X,— 7.1

This filter reacts better to changes in direction, but still generates
noticeable delays when smoothing is strong. Double Exponential Smoothing
Filters, defined by Equation 7.2 and Equation 7.3, offer even better response
to rapidly changing directions of motion [6]. They include the trend (b,) of
the movement, which is determined by an average of the difference between
the last two filter results (X,,, X,_1) and the last calculated trend, weighted
with the factor 7.

by, :'}/(Xn—)_(,1,1)+(1 _'}/)bnfl (72)
Xn =aX, + (1 — a)(Xn,1 —i—bn,l) (7.3)

¥ factors closer to 1 are appropriate for reliable tracking systems with less
noise and result in shorter delays. For less accurate tracking systems, such
as magnetic tracking systems, Y factors lower than 0.1 may be necessary to
achieve smooth lines, resulting in noticeable spatial lag. The delay becomes
less noticeable if the tracking system provides a high updated rate, that is,
many samples per second. Reading the tracking system with the highest
possible frequency is, therefore, especially helpful if the tracking data is

! For immediate feedback it is possible to use a temporary point (typically X,,) and replace
it with the filtered point (X,,) when the filtering is done.
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noisy. Usually this requires a process that is independent of the rendering
thread, which runs at a higher frequency and writes the tracking data into a
queue. As mentioned in Section 6.2.2.2, research by Keefe et al. [7], Arora
et al. [8], Barrera Machuca and Stuerzlinger [9], and Batmaz et al. [10]
indicates that freehand sketches are often noisier in depth than in horizontal
and vertical directions. Therefore, it may be beneficial to smooth tracking
data more strongly in the egocentric depth direction.

Another useful method to improve the visual quality of sketches was
proposed by Thiel et al. [11]. To distinguish details intended by the drawer
from noise caused by the tracking system, they use the speed at which the
line was drawn. The higher the speed of the drawing movement, the more the
user input is smoothed.

7.2 Sampling

As soon as the user presses the button provided on the interaction device, the
position and orientation data supplied by the tracking system are recorded to
create the sketch geometry. Typically, this data is filtered as described above
before it is processed further. The next step in the processing chain is called
sampling. This is where it is decided which of the input data will be used to
create the geometry. It is important not to use all of the data generated by the
tracking system, otherwise a lot of data could be generated that has no visual
effect. For example, if the user holds the input device still with the button
pressed, approximately identical position data is generated in each scanning
run. If all of this data were to be transferred, the result would be many lines
in a very small space that would hardly be recognisable to the observer. In
addition, a large number of points in a single spot could distort the appearance
of the line in a way not desired by the user. At the same time, the data set to be
processed (supporting points of the sketch) would be considerably inflated, so
that all subsequent processes would be unnecessarily burdened.

In the sampling process, therefore, only those points are considered that
are sufficiently far apart to be perceived by the user. The easiest way to do this
is to define a minimum distance that points must maintain from each other.
For each position supplied by the tracking system, the Euclidean distance
to the previous position is then determined. The new point will only be
considered if this distance is greater than the minimum distance. Furthermore,
it is possible to check whether several consecutive points of a line lie on a
straight line. All points to which this applies can be removed. An efficient
method for selecting the relevant position data for generating strokes is the
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Douglas-Peucker algorithm [12] (refer to Chapter 3 for a brief description of
this algorithm).

In some cases, the Nyquist frequency [13] may be exceeded, which
should be at least twice the frequency of the signal. In other words, the
system does not collect enough position data to correctly capture and
accurately reproduce the user’s sketching movements. For example, when
the user performs very fast zigzag movements, and the created path does
not accurately reproduce the user’s sketch movements. In this case, too little
sampling is often not due to too slow tracking technology but results from
an unfavourably implemented processing pipeline. To achieve better results,
developers can delegate the retrieval of tracking data to a parallel process.

7.3 Geometric representations

After the user’s pen or sketch movements are captured and filtered, they must
be stored in an internal data structure of the sketching application. Many
3D frameworks offer specific functionalities for this purpose, for example,
in Unity3D a so-called line renderer exists, which creates a geometric
representation from a list of points and renders it by connecting the points
with straight lines [14]. The disadvantage of using such functionalities is that
many dependencies to the used 3D framework arise in the program code and
adjustments are more difficult to implement.

The simplest way to do this oneself is to use the scene graph of the
3D framework used. Incoming motion information is then converted directly
into representable 3D geometry, typically by extrusion (see below). Since
the scene graph typically only stores the geometric representations, but not
the original sketch movements, this variant has the clear disadvantage that
changes to sketches and the loading and saving of sketches are very difficult.
It is, therefore, a good idea to save the (filtered) sketch motion data and use
it to generate renderable sketch elements in a separate step. Since in this
case the saved sketch entities are the parameters of the generated geometry,
this approach can be described as parametric modelling [15]. Parametric
modelling is already a standard procedure in CAD. Every CAD tool has a
so-called modelling kernel, which realises the processing and manipulation
of 3D model data as well as the generation of displayable 3D elements, a
process which is called tessellation. In the area of open source software, the
modelling core Open Cascade is available [16].

For smaller projects, which only need a few sketch element types, such as
freehand strokes, straight lines or simple Bézier surfaces, it is also possible
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to develop one’s own modelling kernel which should have an interface
for generating sketch elements, for manipulating them and for persistence
(loading and saving).

Section 8.2.1.1 describes a variety of basic geometric shapes that are
possible and conceivable in immersive sketching applications. This section
focuses on the generation of strokes, the most basic geometric elements of
sketches. In addition, other elements such as surfaces or volumetric objects
can be created in a sketching manner. A number of excellent textbooks
are available for more detailed illustrations of internal data structures,
parameterisation, mesh creation, and rendering [e.g. 17, 18, 19].

7.3.1 Strokes

Strokes are the most important geometric elements of sketches. There are
several ways to generate internal data representations from the information
about sketch movements and to display them. The simplest possibility is to
save the support points generated in the sampling process for each line in
a list and to connect them to each other with a cylinder or a straight tube.
If the support points are close together, this method can already provide
satisfactory results. However, in the case of fast sketch movements which,
due to the limited sampling rate of the tracking system, provide support points
that are comparatively far apart, visible corners and edgy curve shapes can
occur in this method. To avoid this problem, the use of parametric curves is
recommended. These describe the shape of the curve using a mathematical
function that receives the control points as input values. Along this curve a
basic shape is then extruded, so that renderable elements are generated; a
process called tessellation.

7.3.1.1 Parametric curves

If the support points of a line resulting from the sampling process are
described by sq,---,s,, where n is the number of support points, then a
parametric curve can be created using a function p(t), which receives a subset
of the support points as input and calculates the points pg,---, p,, of a line.
The number of support points n and the number of line points m typically
differ. This makes it possible to draw lines with higher resolution than the
interpolation points would actually provide. However, this is accompanied by
the fact that the drawn line can deviate from the real line, since the lines must
be synchronous only at the support points. A selection of simple parametric
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curves is presented below. A comprehensive overview can be found, for
example, in Akenine-Moller et al. [19, chapter 17] .

7.3.1.2 Linear interpolation

The simplest and still, at least in research projects, widely used form of a
parametric curve is linear interpolation between two interpolation points. For
this purpose, the slope between the two points is calculated. Each point of the
curve can then be determined using Equation 7.4.

p(t) =si1+1t(si—si-1), t€[0,1]. (7.4)

The result of the linear interpolation is a piece-wise linear curve, which
connects all points by lines. Since no new line points p can be determined by
the linear interpolation, which do not already lie on a straight line between
s; — Si—1, a parametric description is usually omitted here.

7.3.1.3 Bézier curves

The jagged stroke pattern achieved by linear interpolation is not sufficient
in many application contexts. Smooth, aesthetic transitions between the line
segments, or, in mathematical terms, a geometric continuity of order G'
(tangent continuity) or even G? (curvature continuity), are often expected.
To achieve this, Bézier curves which give G' continuity are used in many
cases [20] (see Box 2.6 in Section 2.2 for further details on Bézier curves).
These curves also use the data from the sampling process as support points.
According to the degree k of the Bézier curve, k + 1 points are used to
calculate a curve segment. The resulting curve lies within a convex hull of
the control points and runs through the first and last of the control points.
The continuous progression is achieved by weighting the influence of the
points S; on the resulting curve differently using the Bernstein polynomial Bf-‘
according to the parameter ¢. Equation 7.5 gives an example of a cubic Bézier
curve drawn between four points. In computer graphics, cubic Bézier curves
with k = 3 are most frequently used.

p(t) =B3(t)po+Bi(t)p1 +B3(t)pa+B3(t)ps, t€[0,1].  (71.5)

In Bézier curves, the resulting curve is most strongly pulled towards the
support points to which it is closest, but without reaching them. While this
results in smoothly continuous curves, it is also the biggest problem of using
Bézier curves for sketches since the curve shown does not pass through
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the curve described by the stylus, except at the first and last point of each
curve segment, but only approximates it. This deviation can result in the
visual appearance of the sketch not corresponding to the user’s intention.
The fact that some of the support points are not on the stroke can also be
problematic if users want to change their sketch later. For example, if users
wanted to change the curve, the easiest way to do this would be to move
the support points accordingly. However, if they do not lie directly on the
sketched line, these manipulations become unnecessarily difficult. For this
reason, representations should be used for the visualisation of sketched lines,
where the support points lie directly on the sketched line, which can be
achieved by Cubic Hermite interpolation.

7.3.1.4 Cubic Hermite interpolation

The advantage of Cubic Hermite interpolation? is that it is relatively easy to
control [19]. It is sufficient to define a tangent m; at each support point py.
The sketched line can easily be transformed into individual Hermite curve
segments. Each support point is then both the end and the beginning of a
segment. The tangent of each interpolation point can be calculated by the
vectors from the previous pj_; to the current interpolation point p; and from
the current interpolation point py to the following interpolation point py as
defined in Equation 7.6.

my = Pk *2Pk—1 4 Pk+12* Pk (1.6)

The tangents can then be used to interpolate the sketched line using the cubic
polynomials in Equation 7.7.

p(t) = (262 =32 + 1) po+ (=263 +36%)py + (2 =262 +)mo + (£ — 12)my,
(7.7)
where ¢ € [0, 1]. Figure 7.1 shows an example curve where the support points
have been highlighted.

7.3.2 Extrusion

So far we have only discussed how to determine the support points of a line
and the points in between. However, this is not enough for the representation

2 Cubic Bezier and Cubic Hermite interpolation are mathematically equivalent and can be
translated into each other.
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Figure 7.1: Piecewise Hermite curve with 10 control points and 9 segments

in a 3D environment. Here, lines must be created that have a volume, even
if it is very small. Typically, tube-shaped geometries are created during 3D
sketching, but there are also other possibilities, which will be discussed in the
following.

The basic idea of extrusion is to create a three-dimensional body in
which a two-dimensional basic shape is drawn along a path through space.
An analogy in the real world is for example the creation of soap bubbles.
Here, the tube soaked in lye is the basic form from which the (albeit slightly
dented) soap bubble is extruded as soon as the tube is moved or air blows
through it. Theoretically, basic shapes can be designed arbitrarily, but should
not intersect itself. They can either be defined in advance and read in
via configuration files or drawn interactively by the user, so that they can
configure their own drawing tools. Extrusion is a basic modelling technique
of CAD. While extrusion paths are precisely parametrically described in
CAD, 3D sketching uses freehand pencil movements for extrusion. The
basic shape required for extrusion is typically described by a list of
two-dimensional points as shown in Figure 7.2(a). These are projected into
three-dimensional space at each support point of the line in such a way
that the respective support point and the centre of the basic shape are
superimposed. In a further step, the points created are linked with the points
of the last extrusion step to create displayable 3D elements (see tessellation
below). There are several approaches to the question of how the basic shape
should be oriented during extrusion.
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Figure 7.2: Extrusion: (a) basic shape, (b) extrusion perpendicular to the
tangent of the sketched line, (c) calligraphic extrusion

7.3.2.1 Extrusion while maintaining the diameter of the basic shape

If the diameter of the basic shape is to be retained as far as possible, it must
be extruded perpendicular to the tangent of the sketched line. In the case of
very sharp lines, the extruded geometry may intersect itself and therefore a
uniform diameter cannot be guaranteed, however, this method usually gives
satisfactory results as shown in Figure 7.2(b).

7.3.2.2 Calligraphic extrusion

For other applications it may be necessary to transfer the 3D orientation of
the stylus one-to-one to the extruded geometry. Similar to a calligraphic pen,
different geometric shapes can be extruded depending on the direction of
movement. This is typically achieved by transforming the two-dimensional
basic shape in each extrusion step into the respective local coordinate system
of the interaction device as shown in Figure 7.2(c).

7.4 Processing of further user input

As mentioned in Section 8.2.2.1, besides the position and orientation of the
drawing tools, other input parameters can be used to influence the shape of
a sketch. For example, it is possible to use a force sensor to measure how
hard the user presses the pen and to determine the width of the drawn line by
scaling the basic shape on its y-axis [cf. 21]. There are no limits to creativity
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when mapping the input parameters to the created shape. It is possible, for
example, to arrange pressure sensors radially on the pen and to manipulate
the extruded basic shape according to the pressure measurements so that
the user has even more control over the created shape while drawing. The
speed of the pen movements can be used as a further input parameter for
geometry creation. For example, fast movements can create narrow and slow
movements thick shapes or, as with brush techniques, denser or looser shapes.

7.5 Tessellation and rendering

Parametric curves can have infinite resolution. In the tessellation process,
polygons (usually triangles) are created from this continuous description
in order to output them to the display via the 3D graphics pipeline. The
smaller the step size in the tessellation process, the finer the resolution of
the 3D geometry, but also the more triangles are created, which can result in
performance losses.

The tessellation process can be performed on the GPU (available through
DirectX 11 and OpenGL 4.0) or on the central processing unit (CPU).
Although the first method is faster, the second method is often chosen for
compatibility reasons.

When generating line geometries, the tessellation and extrusion processes
are often closely related. First, in each extrusion step, a point of the basic
shape is transformed into 3D space as described above. Then the points
of the basic shape (vertices) of the current extrusion step and the previous
extrusion step have to be linked in such a way that representable geometries
are created. For this purpose, a mesh is created that consists of 3D points
(vertices), connections (edges) and surfaces (usually triangles). Triangles are
defined by specifying the indices of the points to be connected.

If a sketch basic shape with n vertices is given and v(i,0...n— 1) describe
the vertex indices of the current basic shape and v(i — 1,0...n— 1) the vertex
indices of the basic shape of the previous extrusion step, the required triangles
can be created in a loop:

// create triangles between all vertex-pairs except

// between the first and the last

for (a = 0; a < n-2; a++) {
create_triangle( v(i, a), v(i-1, a), v(i, a+1));
create_triangle( v(i, a+1l), v(i-1, a), v(i-1, a+1));
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(a) (b)

Figure 7.3: 3D extrusion: (a) basic shape consisting of six points and (b)
extrusion of the basic shape.

// close the band: create triangles between the first
// and the last vertex pairs

create_triangle( v(i, n-1), v(i-1, n-1), v(i, 0));
create_triangle( v(i, 0), v(i-1, n-1), v(i-1, 0));

The result could look like Figure 7.3. If one sets n = 2, the for loop is
ignored and a flat ribbon is generated. This is useful if one wants to draw
lines without thickness. Note that the controller orientation can still be used
to align the ribbon.

The points of the triangles can be defined clockwise or counterclockwise.
This defines which of the sides of the triangle point outwards and which point
inwards. In OpenGL, by default, the counterclockwise sides of the triangle
point outward.

For the first (when the user presses the draw button) and last extrusion
step (when the user releases the button), a cover should also be drawn on the
beginning and end of the stroke so that it appears as a closed body as shown
by the four triangles between the points v(0,0)...v(0,5) in Figure 7.3.

It is also important to set a surface normal for each vertex. Otherwise the
sketched lines will be displayed in one colour and lose all shading.

The procedure described here is particularly easy and quick to implement,
but can produce unattractive results in the case of unfavourable curvatures and
self-penetration. More advanced subdivision techniques that adapt the shape
of the triangles to the actual shape of the curve at higher resolutions are, for
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example, Adaptive Tesselation and Fast Catmull-Clark Tesselation. These are
explained in detail for example in Akenine-Moller et al. [19].

7.6 Modelling kernels

As an alternative to the methods presented here, some systems [e.g. 22, 23]
outsource the internal geometry presentation as well as the tessellation
process to external modelling kernels. Open source modelling kernels such as
OpenCascade [16] are often used for this purpose. These offer the possibility
to parametrically describe complex geometric bodies and to tessellate them
with arbitrary levels of detail. This can be used, for example, to provide
objects with different levels of detail depending on the distance to the viewer.
In addition, they also support the import of CAD files, which allows them
to be displayed within the 3D scene. This point is particularly advantageous
when the sketching functionality is to be integrated into a CAD infrastructure.

A disadvantage of external modelling kernels is that they often require
high integration and maintenance efforts. The decision to develop one’s own
lightweight modelling kernel or to integrate an external modelling kernel
should, therefore, be made taking into account the available development
capacities, the requirements for interoperability and the expected complexity
of the sketches produced.

7.7 Summary

In this chapter, methods for processing freehand user interactions and
techniques for transforming them into 3D sketches were described. However,
only basic principles could be explained. Further issues, such as texturing or
editing of 3D sketches were not mentioned. For more detailed descriptions,
interested readers are referred to related literature from the field of computer
graphics [e.g. 17, 18, 19].

The principles presented in this chapter can help to better understand the
functionalities of the 3D sketching applications presented later in Chapter 9.
Prior to this, Chapter 8 explains which interaction techniques and devices are
available to users to create 3D sketches.
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