
Exploring Design Space by
Interpolating Between Multiple

Sketches

A Thesis Submitted
in Partial Fulfilment of the Requirements

for the Degree of

Master of Technology

by
Rahul Arora

Roll No. 10327555

under the guidance of
Dr. Vinay P. Namboodiri, Department of CSE, IIT Kanpur

Dr. Adrien Bousseau, GraphDeco, INRIA Sophia-Antipolis

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
July, 2015

Abstract
Designers start product design process by drawing various quick and imperfect

sketches. In this process, they represent the target concept via multiple shapes and

geometric perspectives. We present a sketch-based rendering method and a tool

built on top of it to help designers explore the design space induced by sketches of

a single concept. Our tool allows a designer to visualize novel sketches by mixing

and matching between the geometric and visual properties of multiple sketches.

The method relies on an iterative algorithm to match and warp between sketches

using minimal user interaction. We modify known techniques for image matching,

warping and morphing to adapt to the unique challenges posed by sketchy inputs,

and combine them to allow quick navigation of the design space of sketches. Our

tool tries to fill a gap in the initial stage of the product design pipeline, allowing

designers and their patrons to make better informed choices before proceeding to

the time-consuming and expensive parts of the pipeline involving CAD, 3D design

and rendering and/or 3D printing.

iv

Dedicated to my parents for constantly encouraging me; my brother, without whose

guidance I wouldn’t be here to write a thesis in the first place; and to my friends,

who supported me along the journey.

v

Acknowledgement
I would like to express my sincere gratitude towards my thesis supervisors, Dr.

Vinay Namboodiri and Dr. Adrien Bousseau, for their support and encouragement.
I am grateful to them for their careful evaluation of my work and giving sound
guidance while still giving me freedom to explore and discover my own solutions.
Their diverse knowledge, expertise and understanding significantly enhanced my
experience as a Masters student. I am also thankful to them, and to Dr. Shashank
Mehta, for going the extra mile in administrative efforts to make this collaboration
possible.

I thank the Department of Computer Science and Engineering, IIT Kanpur, and
Inria Sophia-Antipolis, for providing the necessary infrastructure and a congenial
environment for research work. I must also acknowledge the role of Sophie Honnorat
and Dr. George Drettakis for making sure I was always welcome at Inria and
ensuring that my visits were comfortable, and my academic needs were always taken
care of.

A special thanks goes out to Dr. Raghunath Tewari who has been a teacher,
research adviser, mentor, and academic guide for me for the past three years. It
was under his mentorship that I took my first steps in research, and his guidance
prepared me for this thesis.

I cannot appreciate enough the technical help I received from Rodrigo, Ayush,
Ashudeep and Kenneth, whom I could always count on whenever I was stuck. A
special thanks goes out to Jerome for solving my problems and patiently teaching
me time and again whenever I mixed up compilers, target systems, or libraries. I’m
obliged to Emmanuel and Raghav for helping me with Cintiq tablets.

A big thank you to all my friends in Kanpur, Delhi, Bangalore and Nice for
making this past one year and a quarter fun and happening. Thanks to my friends
in the department of CSE, IIT Kanpur, and in GraphDeco, Inria Sophia-Antipolis,
for our philosophical debates, exchange of ideas, and venting of frustration over
coffee/lunches/dinners during the course of this thesis.

I thank my family for always providing moral support and encouragement for
my academic endeavors, and through my entire life.

Lastly, this research would not be possible without the financial assistance of
Department of Science and Technology (Govt. of India), and Inria Sophia-Antipolis.
I express my gratitude towards both of these institutions.

Rahul Arora

vi

Contents

Abstract iv

List of Figures viii

1 Introduction 1

2 Related Work 7
2.1 Sketch-based modeling and interpolation 7
2.2 Image-based rendering and morphing 8
2.3 Image matching . 9

3 Interpolation between Sketches 11
3.1 Overview . 11
3.2 Matching . 13

3.2.1 Manual matching . 13
3.2.2 Shape context matching . 13
3.2.3 Regularization . 15
3.2.4 Graph matching . 16

3.3 Warping . 19
3.3.1 Linear interpolation using triangulation 19
3.3.2 Thin plate splines . 21
3.3.3 Shape preserving warp . 21
3.3.4 Edge detection . 26

3.4 Iterative match-warp . 27
3.5 Rendering . 28

4 Experiments, Results and Applications 32
4.1 Results . 33

4.1.1 Choice of components . 38
4.1.2 Comparison with other work 39
4.1.3 Analysis and failure cases . 41

4.2 Application: Design space exploration 42

5 Conclusions and Future Work 46
5.1 Conclusions . 46
5.2 Future work . 47

A Redrawing of Sketches 49

vii

List of Figures

1.1 Product design pipeline . 2
1.2 Sketch morphing pipeline . 4

3.1 Shape context feature descriptor . 14
3.2 Effect of regularization . 16
3.3 Progressive Graph Matching . 17
3.4 Visualizing linear interpolation using triangulation 20
3.5 Generating a constrained Delaunay triangulation for shape preserving

warp . 23
3.6 Edge detector comparison . 26
3.7 Creation of holes in forward mapping 29

4.1 Morphing images warped using iterated match-warp algorithm 34
4.2 Warping using iterated match-warp algorithm 35
4.3 Morphing multiple images . 36
4.4 Extrapolating sketch warps . 36
4.5 Effect of using an occlusion mask . 37
4.6 Results using various values of numIter 38
4.7 Results using various values of wp . 39
4.8 Results using component choices other than iterative match-warp . . 40
4.9 Comparison between proposed method and state of the art solution . 41
4.10 Failure due to self-intersecting projections 42
4.11 Failure due to large shape difference 43
4.12 Mapping sketches into the plane representing the design space 44
4.13 Mapping sketches to design space according to relative motion fields . 45

A.1 Original sketches with their redrawn versions 50
A.2 Sketches drawn using 2D projections of stock 3D models 50
A.3 Original sketches with their redrawn versions (2) 51

viii

Chapter 1

Introduction

Sketches are swiftly executed freehand drawings used to make a record of an idea

that an artist may plan to develop later, or to quickly demonstrate an idea, object

or concept. In product design, sketches take a more specific function of representing

the general design and functionality of the intended product. In the product design

pipeline, various forms of sketches are utilized [Sok]: beginning from those demon-

strating rough ideas to geometrically accurate sketches showing exact details of the

product. Contemporarily, the latter are generally executed on a digital platform like

a tablet computer or a desktop computer while the former may be drawn digitally

or using the traditional pen-and-paper approach, depending on the designer’s own

preferences. The pipeline is a set of various 2D and 3D visualizations produced

by the designer to communicate the product’s visual and functional details to her

patron, before the product is sent for manufacturing.

Product design is a dynamic field, and with constant innovation in designing,

prototyping and manufacturing techniques, the pipeline keeps on adapting to tech-

nological changes. A typical design pipeline (figure 1.1) will, however, involve some

of the following generic stages [ES11; Sok]:

• Creating a quick freehand sketch which gives a general idea of the intended

product

• Drawing a detailed sketch showing the product from various viewpoints. De-

pending on the complexity of the product being designed, there may also be

1

2

(a) Ideation sketches (b) Refined sketches

(c) Shaded 3D models (d) Prototype

Figure 1.1: Product design pipeline. Notice how the number of options is reduced
after each stage. © Mike Serafin. http://www.memikeserafin.com/.

drawings focusing on the functional details of the product.

• Using a CAD software to produce a to-scale 3D model of the product.

• Prototyping the product using a 3D rendering and shading software or produc-

ing a tangible prototype (using traditional techniques such as clay modeling

or wire meshing, or with the aid of upcoming technology such as 3D printing).

• Manufacturing the product.

The pipeline is not a linear step-by-step procedure, and involves significant back-

and-forth movement depending on changing product needs, developments in under-

standing of the product, or dialogue between the designers and patrons. However,

since steps in the advanced stage of the pipeline entail significantly more designer

time and monetary costs, making sound choices at early stages of design can cut

down these accruing costs.

This thesis deals with the very initial phase of the product design pipeline. When

beginning the process of designing a product, a designer imagines multiple ideas and

sketches them roughly. Such sketches are known as ideation sketches [BW05], and

http://www.memikeserafin.com/

3

provide the starting point for a designer to communicate a concept. The purpose

of ideation sketches is to explore ideas quickly, the ideas usually being rough and

incomplete and not following conventions which typically guide final drawings.

We present a method to interpolate between multiple sketches of the same func-

tional concept. That is, we interpolate between sketches differing in shape and

viewpoint but depicting objects belonging to the same functional class: a typi-

cal use case being a product designer exploring initial ideas. While our method is

generic, and should work for different types of sketches, we focus on ideation sketches

since interpolating and morphing ideation sketches is a problem that hasn’t been

studied before. Earlier methods [Sha+12; Xu+14; Nea+07; BBS08] have dealt with

slightly advanced stages of the design pipeline: facilitating the movement from ini-

tial sketches to final drawings or CAD models. While these tools are useful in their

own right, it still takes significant effort to generate proper inputs for these tools,

and such tools don’t work out of the box for inaccurate sketches which are common

during the ideation phase. For instance, along with additional user interaction, such

methods often require the designer to simplify and vectorize1 their sketches to make

the inputs computationally simpler and more approachable. Therefore, it makes

sense to explore methods which allow designers to make more informed choices in

the ideation phase itself, before taking the effort to vectorize the sketches. For com-

pleteness, we note that there exist several systems for automatic vectorization of

sketches, but even state of the art systems such as [OK11; BC13] have significant

constraints on the type of sketches or the sketching methods they can work with.

For instance, the method presented in [OK11] makes use of temporal properties of

the sketching process and records strokes while sketching digitally, thereby foregoing

the traditional sketches preferred by many designers [BD03].

Our interpolation method allows exploration of design space of sketches by gen-

erating in-between shapes and viewpoints for the objects being created. See Figure

1.2 for a concise description of our pipeline, and an example of the final in-between

1Vectorization is the process of converting the raster graphics expressed as pixel intensities to
vector graphics which are expressed using geometrical primitives such as lines, circles, et cetera.

4

Figure 1.2: The proposed sketch morphing pipeline. (Left) Input: sketches along
with very sparse (5-6) point correspondences. (Center-left) Matching: expand the
set of correspondences. (Center-right) Warping: align the two sketches to generate
dense (per-pixel) correspondences. (Right) Rendering: generate the final interpo-
lated sketch using the two warps and blending. In our pipeline, matching and
warping are performed as alternating steps in an iterative algorithm: point corre-
spondences improve alignment and improved alignment gives better matches.

sketches we generate. This allows a designer to quickly explore more ideas at an

early stage of design, thus enabling her to make more informed choices with the

increased ideas. The tool we build on top of the interpolation algorithm also allows

the designer to explore the design space as an animated visualization of a sequence

of in-between sketches in the design space. The tool also allows designers to mix

and match among the projected shapes and styles of several sketches.

Our interpolation pipeline is based on the standard image morphing pipeline (see

Figure 1.2): estimate a sparse matching between images, warp the two images onto

each other, and blend the warped images together. However, there are numerous

options available for executing each step, and we describe a number of them in

detail, along with rationales for our choices in chapter 3. We also motivate our

choices based on experiments discussed in chapter 4. Moreover, multiple non-trivial

adaptations are required to make the pipeline work for sketches, as most of the

ingredients available are suited for natural images and do not work well out-of-the-

box for sketches. This is because a sketchy input style presents unique challenges

of its own. Unlike natural images, sketch data is very sparse: everything other than

the contours is just white space. Freehand sketches also tend to be geometrically

inaccurate, are often incomplete, and do not represent exact projections of the shape

of the object being described. Another challenge specifically due to our use case is

5

that we aim at interpolating between different shapes as well, which means that

we need to estimate a highly non-rigid transformation between the two sketches,

which is not handled well by many popular methods, since they try approximating

affine transformations. Finally, a large number of modern registration frameworks

such as [TN10; TZY08; Shr+11] which work for natural images or simple shapes are

data-driven but such approaches are difficult to implement successfully for ideation

sketches since data is scarce. This motivates us to build an algorithmic technique.

The basic pipeline interpolates between two sketches, and interpolating between

multiple sketches is a natural generalization. First, we use a small set of user corre-

spondences to build a set of uniformly distributed sparse correspondences between

the two sketches. Then, we overlay a triangle mesh each on both of the sketches.

We warp the mesh in a shape preserving manner, using the information from the

sparse matching. In our warp, the mesh functions as a partition of the sketch into a

piecewise linear domain, that is, we just solve for the positions of the mesh vertices,

and positions of all pixels inside the triangles are obtained via linear interpolation.

This gives us a dense matching between the two sketches. We do these two steps

iteratively to converge to a good solution (normally, we use a fixed number of iter-

ations). Lastly, we use OpenGL to generate the individually warped sketches, or to

blend both the sketches together to produce an in-between warp. Our tool provides

the designer with a choice to explore either of these options. This pipeline lists the

set of components which gives the best results in our experiments. However, we also

explore various other options for the sparse matching and warping steps, which are

described in detail in chapter 3. Specifically, it is possible to forgo user correspon-

dences altogether and build a completely automatic solution. However, we normally

keep the user correspondences since it gives better results and allows some level of

user control on the process.

Thesis organization. The thesis is organized as follows. chapter 2 briefly

discusses the literature closely related to the thesis. In chapter 3, we describe the

pipeline in detail, along with various components we tried for each step. chapter 4

6

then lists the experiments we carried out and the results we obtained. This chapter

also describes the tool we built for exploration of design space. We conclude with a

summary of the thesis and a discussion of possible future work in chapter 5.

Chapter 2

Related Work

While there isn’t any previous work that we are aware of which deals with the prob-

lem of morphing between freehand sketches, a lot of interesting work has been done

in various related fields which we build upon. We broadly categorize the related work

into three categories: 1. Sketch-based modeling and interpolation, 2. Image-based

rendering and morphing, and 3. Image matching. We will briefly discuss each of

them.

2.1 Sketch-based modeling and interpolation

Sketch based modeling has been extensively studied in literature. A number of

methods reviewed by [Ols+09] require a user to draw a clean sketch from multiple

viewpoints, and the system fits a 3D model to them. Lately, some methods have

focused on building full or partial 3D models beginning with a single sketch as

the starting input. CrossShade [Sha+12] infers surface normal fields using cross-

sections marked by designers to show the principal surface directions, and uses

these fields to facilitate 3D rendering. However, the method requires the user to

provide vectorized sketches and clearly marked cross-sectional curves, which itself

is a time consuming process. More recently, [Xu+14] proposed a method to build

3D models from vectorized drawings using certain 3D regularity cues inferred from

sketches. Some methods such as [BBS08] allow users to directly sketch 3D models

7

8

using a custom interface. We see our work as fitting in the design pipeline before

methods such as these so that the designers have a better idea of the shape they’re

going to design even before committing to computing or designing a 3D model. Our

method also differs from the above in the sense that they use a single sketch/shape

as the definitive input while our method is meant to explore the design space for

the selection of one definitive sketch to take forward along the design pipeline.

Perhaps the closest relative to the problem being solved in this thesis is [RID10],

which uses vectorized cartoon drawings drawn from various different angles to infer

some 3D information, and render from novel viewpoints. The usage of 2D inter-

polations to approximate 3D rotations is similar to what we try to achieve. The

major differences are that the method uses vectorized drawings, and the correspon-

dences are provided implicitly by the user by drawing labeled strokes in each view.

Finding correspondences is a difficult problem itself, which we try to solve. Also,

their method is quite restrictive in terms of the key viewpoints required and the

complexity of supported drawings.

[Sha+13] also try to interpolate between different concept sketches. However,

the method focuses on transitioning between extreme positions of a moving part

in an industrial object. Moreover, the moving part must be approximable using

a cylindrical or cuboidal geometry (also known as the proxy geometry) and goes

through a rigid motion . On the contrary, our method can be used for general

classes of objects and motions between sketches. The proposed method gives a

more general way to represent non-rigid interpolations.

2.2 Image-based rendering and morphing

Another closely related area which has undergone comprehensive scientific study is

image-based rendering. Sitting at the intersection of the fields of computer graph-

ics and vision, image-based rendering (IBR) algorithms attempt to render novel

views by warping and/or morphing input images, unlike the traditional 3D computer

graphics pipeline which requires complete geometric information. Image-based ren-

9

dering methods may ([CW93; SD96]) or may not ([LH96]) use implicit geometric

information specified as correspondences between input images. Sometimes sparse

or approximate 3D geometric information about the scene may also be specified as

an input, for example in [MB95]. More discussion on IBR goes beyond the scope of

this thesis. However, the interested reader may go through [SK00] for a brief review

of IBR techniques. The reader is also advised that the review, however, excludes

recent developments in the field.

Our method is most comparable to approaches which use implicit geometric

information, that is, 2D correspondences between images. [SD96] introduced view

morphing, which uses manually provided sparse point correspondences to estimate

camera positions and mimic 3D rotations between the two viewpoints. However, as

discussed in chapter 1, 2D correspondences in sketches do not directly encode cor-

respondences in 3D space, and can therefore be more challenging to use. Moreover,

correspondences were provided manually in the original paper, while our method

generates them based on very few user indications. Recent methods have bettered

on the classical view morphing technique introduced in [SD96] using various method-

ologies such as estimation of optical flow [Mah+09], or computation of half-way

image for better alignment [Lia+14]. The latter works particularly well for im-

ages with varying shapes, colors as well as viewpoints and requires only very sparse

correspondences from the user. However, the technique is only suited to a dense rep-

resentation provided by natural images, and doesn’t naturally generalize to sparse

shape representations inherent in sketches.

2.3 Image matching

Image matching, often known as image registration in literature, aims at automat-

ically or manually finding correspondences between images in order to align them.

Most recent automatic image registration methods are feature-based, that is, they

represent an image using features computed uniformly or on detected keypoints, and

then match the feature representation of one image with another. SIFT [Low04] is

10

one of the most common features used in modern registration pipelines. Image reg-

istration methods often also include a warping method as the final step or as part

of an iterative process to align the input images. A thorough compilation on recent

feature-based registration techniques can be found in [Bar07].

A well-studied approach to feature-based correspondence is translating the prob-

lem into what is known as graph matching. This approach involves representing an

image as a graph with its vertices representing low level features (say patch features

such as SIFT and patch intensity) and edges representing the relations between the

features. A graph matching algorithm then tries to lay the graph corresponding to

one image over the other while minimizing the distortions of the two. Since general

graph matching is NP-hard [GR96], various optimization methods, e.g., [TKR13;

Lee12; SCL12] have been proposed to solve its various relaxations.

Our sketch interpolation pipeline is closely linked to image registration. Begin-

ning with very sparse user correspondence between two sketches, we generate denser

correspondences by iteratively matching shape features and warping one sketch to-

wards the other. We also examine a state of the art graph matching algorithm in

chapter 3, discussing its adaptation to a sketchy input style, and its performance

vis-à-vis our approach.

Chapter 3

Interpolation between Sketches

In this chapter, we describe in detail our algorithm to interpolate between sketches.

The goal is to generate novel shapes and viewpoints to visualize the concept the de-

signer wants to explore. Our focus, for this chapter, largely remains on interpolating

between two sketches, since the interpolation algorithm for multiple sketches is a

straightforward generalization. The problem of interpolation between two sketches

is similar to that of keyframing [D.85] in animation in which a designer specifies

key events in the motion path, and an algorithm attempts to mimic the full motion

path by interpolating between subsequent frames. The keyframes, however, tend to

be much more similar than the pairs of sketches we target, and the transformations

can normally be treated as rigid.

Here, we describe our method to perform the non-rigid transformation between

two sketches. We also go through various different approaches we explored, before

arriving at the current solution.

3.1 Overview

Consider two sketches S0 and S1, both represented in the form of grayscale images

of size (h,w). That is, Si ∈ [0, 1]h × [0, 1]w, i ∈ {0, 1}. On a high level, our task is

to generate all plausible sketches between them. That is, if we could map the two

11

12

sketches S0 and S1 to some 1D space, we need to produce

Sα = α× S0 + (1− α)× S1 (3.1)

Since there is no single mathematically correct way to transform images or sketches

to such a one-dimensional space, there can be various methods to perform sketch

interpolation. Many image morphing algorithms can be broken down into a three-

step pipeline: 1. Matching, 2. Warping, and 3. Rendering.

We model our algorithm on this traditional pipeline, while adapting each step

for our purpose. Matching refers to the generation of a sparse set of correspondences

between the two given sketches. Since sketch matching is just a special case of image

matching, our matching pipeline is similar to a typical registration algorithm for

natural images, with certain adaptations to suit our inputs. Warping is the process

of using these sparse correspondences, as well as inherent information present in

the sketches, to warp both sketch onto each other. Rendering, the final step of the

pipeline, is used to morph the warped versions of sketches together.

In the remaining parts of this chapter, we describe various methods we tried for

the three steps, along with the final solution we arrived at: An iterative method

involving alternating shape context matching and shape preserving warping steps

augmenting each other, followed by an alpha blending based morphing step to render

the final sketch(es). The organization is as follows. We first describe the matching

strategies we tried, including shape contexts. Then we describe various approaches

to warping, with the shape preserving warp discussed in detail. We then outline

our iterative method which combines the two. Finally, we describe how we obtain

the warped sketches, and blend two or more of them together to generate the final

render.

13

3.2 Matching

The aim of the matching step in our algorithm is to generate a set of point corre-

spondences between the two sketches. This set of correspondences is then used as an

input for the next step in the algorithm, warping. The warping step is algorithmi-

cally independent of how the matches are generated; therefore, we describe various

methods to get the sparse correspondence set, M(S0,S1).

3.2.1 Manual matching

The simplest way to obtain matches is just to ask the user for them. However,

providing correspondences is a tedious task, and any modern registration algorithm

cannot rely on the user to provide too many correspondences. Moreover, the appli-

cation we target (see Chapter 4) can work with a large number of concept sketches,

and it can be a daunting task for a user to provide all the required correspondences.

Therefore, while our method does rely on user correspondences, we limit the re-

quirement to a very small number. Typically, our pipeline needs only 4-6 point

correspondences per sketch pair from the user. The user can also choose to keep the

same correspondences for multiple pairs, further reducing the effort required.

3.2.2 Shape context matching

Shape context [BMP02] is a descriptor which has been widely used to describe

2-D shapes. Shape contexts are computed by treating an object as a set of two-

dimensional points. A drawing or sketch of an object, S can be represented by a

set of discrete points by sampling along its contours. Practically, this is done by

taking a sample of its edge pixels, as detected via a suitable edge detector Edge(S),

to get a set P = {p1,p2, . . . ,pn} of n points, where each pi = (xi, yi) is a pixel of

the sketch S.

Consider a point pi, 1 ≤ i ≤ n. To compute the shape context descriptor of pi,

imagine a set of n−1 vectors from pi to all other points in the set P . Shape context

14

(a) (b) (c)

Figure 3.1: Shape context feature descriptor. a) Point set sampled from a sketch.
b) Laying the shape context log-polar grid on the point p. c) Shape context his-
togram: color darkness represents the value stored in the bin.

includes information about these n− 1 vectors, expressing the configuration of the

entire shape relative to pi. This makes shape context a rich and discriminative

shape descriptor, unlike more local visual descriptors such as contour location or

pixel intensity. However, to make the description compact and robust to small

shape differences, the vectors are distributed into histograms by dividing the R2

space into K bins. The sequence of histograms on these bins is known as the shape

context of pi.

hi(k) = #{q 6= pi|(q − pi) ∈ bink} (3.2)

We use the histogram bin distribution as described in the original paper. The bins

are uniform in log-polar space [AD96] with respect to pi. This means that the bins

are demarcated by concentric circles centered at pi whose logarithm of radii forms an

arithmetic progression, and lines passing through pi, whose angles from an arbitrary

reference direction form an arithmetic progression (see Figure 3.1).

Shape contexts are intrinsically invariant to translations. They are easily made

scale invariant by normalizing all radial distances by the mean distance between the

n2 point pairs in the shape. Moreover, the coarse histogram representation makes

shape contexts robust against small geometric perturbations, occlusion, and outliers.

Consider a point pi sampled from S0 and a point qj sampled from S1. Since,

shape contexts are histogram based distributions, the cost of matching pi to qj is

15

naturally defined using the χ2 test statistic:

C(pi,qj) = 1
2

K∑
k=1

[h0
i (k)− h1

j(k)]2

h0
i (k) + h1

j(k) (3.3)

where h0
i (k) and h1

j(k) are the K-bin normalized histograms at pi and qj, respec-

tively. [BMP02] also suggests using an optional term based on local appearance

similarity in terms of intensities at the patches around pi and qj. However, the

paper uses this term only when working with natural images. Since we deal with

sketches varying in shape, and do not wish to rely on drawing style for matching as

well, we do not use such a term.

Once we compute the shape context for all sampled points on both the images,

we can use a bipartite matching algorithm such as the Hungarian algorithm [Mun57]

to compute the best matching between the two point sets. This method works by

solving for the permutation σ of size n such that the shape distance

H(σ) =
n∑
i=1

C(pi,qσ(i)) (3.4)

is minimized. The algorithm works in O(n3) time.

However, the Hungarian algorithm only makes use of the correspondences, thus

matching each point to the most similar one in the second image, independent of its

neighbors. Such a technique can give a geometrically discontinuous matching (figure

3.2c), which is undesirable for warping applications. Introducing regularization over

the image space enables generation of smooth warp functions, as described next.

3.2.3 Regularization

In various computer vision and machine learning applications, additional constraints

are generally introduced when solving a problem to prevent overfitting. Such terms

are known as regularization terms. Intelligent regularization terms help produce

smoother results by reducing the weights of bad matches. In computer vision ap-

plications, therefore, it is common to call the regularization terms as smoothness

16

(a) (b) (c) (d)

Figure 3.2: Consider matching using a scale and flip invariant feature computed on
continuous regions of a single color. a) and b) Images to be matched. c) Matching in
the absence of regularization: each leaf matches its most similar looking counterpart.
d) Matching utilizing geometric regularization favoring matched leaves to have the
same relative positions. In an application like warping, the second matching set is
better, since it can produce a smooth warp.

terms, and the correspondences as the data terms.

See Figure 3.2 for an example of how regularization helps produce better matches

by preventing local discontinuities. Smoothness terms can also be a way to densify

the sparse matches in an intelligent fashion, and section 3.3 on warping explains

the various smoothness terms which can be used to create a dense match from the

sparse matches obtained via shape context matching, graph matching, or manual

matching methods. We now describe graph matching.

3.2.4 Graph matching

For sketch matching using shape contexts, an image is represented using a set of

two-dimensional points. Another representation widely used in literature [TKR13;

Lee12; SCL12] is a graph. Let us try to represent a sketch S by a graph G(V,E). We

can use an edge detection based strategy as described in section 3.2.2 to find a set

of n points to represent the image, say V ≡ P = {p1,p2, . . . ,pn}. However, we also

include relations between some pairs of vertices in the form of edges of the graph,

E. Elements of both V and E may also have some attributes associated with them.

Attributes associated with the the vertices of G are generally image features such

as SIFT [Low04] or MSER [DB06], or shape features such as shape contexts. Edge

attributes, and the decision to choose edges to be considered out of the possible n2

vertex pairs depend on the exact graph matching algorithm being used.

17

(a) (b)

Figure 3.3: Progressive Graph Matching. a) Active graph (solid edges and vertices)
out of the full graph (faded edges and vertices). b) Computation of distance djb|ia
to find geometric compatibility of the matches (pi,qa) and (pj,qb). Tia is the
translation from pi to qa.

Here, we describe “Progressive Graph Matching”, a state of the art graph match-

ing algorithm. In [Lee12], the authors present a progressive framework for solving

general graph matching problems, along with a strategy to construct the graph from

natural images for registration applications. We adapt the strategy for registering

sketches.

The progressive framework consists of two alternating steps executed iteratively:

graph progression and graph matching. Evidently, graph matching refers to using any

available graph matching algorithm for matching the current graphs, but the authors

report their best results using the Reweighted Random Walks for graph Matching

(RRWM) algorithm described in [CLL10], and we stick to the same algorithm for

all our experiments as well. The graph progression step updates the current graphs

using a Bayesian formulation. The formulation essentially uses a probabilistic voting

to choose the sets of active vertices and edges for both graphs, with active meaning

that only these vertices/edges are considered for matching during the next graph

matching step (see Figure 3.3a for example). We just give a basic description of the

algorithm here. For exact optimization methods, the reader can refer to the original

papers.

Let us now come back to the problem of matching sketches S0 to S1. Let us call

the full graph for sketch Si (i ∈ {0, 1}) as Gi(Vi, Ei), while the active graph for the

jth iteration be Gji (V
j
i , E

j
i). Note that all these graphs are undirected. Firstly, the

18

full graph Gi is created by dividing the sketch Si into a grid, and then searching from

each cell a junction of two or more edges, and if one is not found, then searching

for any point on an edge (see red points in figure 3.5c). The former is done since

junctions mark regions of rapid shape or orientation change and thus form important

visual cues in sketch understanding, while the latter is useful since edge detectors

find contours, which are the basic building blocks of sketches. The edge sets are

chosen to form complete graphs, that is, Ei = Vi × Vi.

The vertex set of G0
0 , V 0

0 , is kept as V0, while V 0
1 is selected as:

V 0
1 = ∪p∈V1{(p,qj)|qj ∈ kSC(p, Vj, n0)} (3.5)

where kSC(p, V, n) gives the n nearest neighbors of p in the set V in terms of shape

context distance, and n is a parameter. The edge set is computed as:

E0
i = ∪p∈V 0

i
{(p,p′)|p′ ∈ kNN(p, k1)} (3.6)

where kNN(p, k) gives the set of k-nearest neighbors of p in the image space. For

any t, the edge set is constructed in a similar fashion. In each iteration, the

graph progression step constructs Gti from Gt+1
i using probabilistic voting from

each set of matches in Gti . More precisely, the probability of retaining/including

a match m = (pi,qa) is dependent on two terms: the data term is computed in-

dependently for all matches, and is therefore known as the unary affinity, while

the smoothness (regularization) term is computed by taking pairs of neighboring

matches, and is called the pairwise affinity. The former is given by the shape

context distance C(pi,qa), and represents the strength of the match. The lat-

ter describes how well m fits with the other matches which are connected to it

via an edge in Et
0 or Et

1. The fitness between two matches m1 = (pi,qa) and

m2 = (pj,qb) is computed as a monotonically decreasing function (for example,

f(x) = α − x, or f(x) = e−x) of the geometric difference djb|ia of the vectors from

pi to pj and from qa to qb, that is, djb|ia = ‖(pj − pi) − (qb − qa)‖ (refer figure

19

3.3b). Note that, dia|jb = djb|ia. To make the problem tractable, and to consider

only local effects, the geometric fitness is computed only for matches such that

{pi,pj} ∈ Et
0∧ (qb ∈ kNN(qa, k2)∨qa ∈ kNN(qb, k2)), where k2(< k1) is a parameter.

Since the formulation computes probabilities, the geometric difference is normalized

over all pairs of matches considered. The pairwise affinity helps solve the problem

of overfitting by suppressing matches which are not compatible with their neigh-

bors. This results in a smoother alignment of the two images and reduces local

discontinuities.

The graph progression then computes the optimal values of V t+1
i (i ∈ {0, 1}) so

that the sum of the two affinities for all valid matches and match pairs is maximized.

This value is called as the score of the graph matching step. The iterations are

continued till this score increases.

3.3 Warping

Image warping is the process of moving the pixels of an image. In our context, we

use image warping techniques to transform a sketch (the source image) so that it

aligns with another one (the destination image). Since, sketches are just a special

class of images, in order to fully specify such a warp, we need to specify where each

pixel of the source image should move to. This is equivalent to specifying the motion

vector for each pixel. We use the term motion field to refer to the motion vectors

of all the pixels being moved. Mathematically, the motion field F can be expressed

as Fp = T (p), ∀p ∈ pixels in the image, where T (p) ∈ R2 gives the motion vector

at a pixel p. Now, we discuss various ways of solving for this motion field, given

sparse point correspondences from one sketch to another.

3.3.1 Linear interpolation using triangulation

Consider S0 and S1, the source and destination sketches. Let the set of correspon-

dences between them be M = {mi = (pi,qi) | 1 ≤ i ≤ n}, where pi’s are pixels on

20

(a) (b)

Figure 3.4: Visualizing how triangulation-based linear interpolation works. a)
An input sketch along with points which have their correspondences defined. b) A
Delaunay triangulation having vertices as points which have their correspondences
defined, along with the corners. For a general point, its barycentric coordinates are
used for linear interpolation.

S0 and qi’s are pixels on S1. Now, to compute the motion field for the (S0,S1) pair,

we partition the sketch into a set of triangles generated using Delaunay triangulation

on the set {pi | 1 ≤ i ≤ n} ∪ {corners of S0} (see figure 3.4). Let Fxy represent the

motion field at a pixel (x, y) in a triangle with vertices (x1, y1), (x2, y2) and (x3, y3),

with barycentric coordinates (α, β, γ). Assume that the corners of S0 are matched

to the respective corners of S1. Now, the motion field at (x, y) can be computed as

the weighted average of the three vertices as:

Fxy = αFx1y1 + βFx2y2 + γFx3y3 (3.7)

However, linear interpolation using Delaunay triangulation is too simple to produce

good results for most registration applications. Moreover, it can only be used to

densify correspondences, and cannot correct local mismatches by smoothing the

motion field, as all matches must be treated as hard constraints. In Chapter 4, we

show that linear interpolation is insufficient for sketch warping.

21

3.3.2 Thin plate splines

Another widely used model for interpolation is the Thin Plate Spline (TPS) model [Duc77].

In addition to interpolation, TPS also allows for local smoothing. The model is phys-

ically analogical to the bending of a thin metal sheet. Just as a rigid metal sheet

resists bending, TPS also includes energy terms to impose a penalty involving the

smoothness of the fit surface. To understand the thin plate spline model, consider

the same set of correspondences and their associated motion vectors. Also, let Fxp

give the x-component of the motion field at p, and Fyp the y-component. Imagine

the field Fx as a displacement in the z-direction, orthogonal to the plane of the

sketch S0. Now, we need to fit a surface which best interpolates the displacement

field z = Fxp , ∀(p,q) ∈ M. Similarly, we proceed for Fy. We do not describe the

exact equations governing the bending energy in the TPS model. Suffice to say that

the TPS model works better than triangulation based linear interpolation since it

provides for smoothing as well. However, the shape preserving model described in

the next section works better than TPS, and we use the same for our experiments.

See the results in chapter 4 for a comparison.

3.3.3 Shape preserving warp

The idea of a shape preserving warp is to maintain the local shape of the image

being warped as much as possible, that is, minimizing the distortion caused by the

warp. Various strategies for shape preserving warps have been described in [Zha+09;

Liu+09; CSD11; CSC14]. While none of these strategies is directly applicable for

sketch warping, the overall strategy we employ is adapted from [CSD11], and the

optimization problem we solve is very similar to theirs.

We set up an energy minimization problem by combining the positional con-

straints due to the correspondences M, and the shape preserving behavior of the

warp. We then solve this optimization problem using variational optimization.

Setup. Before solving for the shape-preserving warp, we need to overlay a

triangle mesh on the given sketch S0. The triangulation we require is a con-

22

strained Delaunay triangulation [Che87] in which the contours of the sketches are

necessarily included as segments in the triangulation. The contours are first de-

tected using a suitable edge detection method. Then, regular samples are taken

along the edges to build the set of vertices V = {v1, . . . ,vN} for the triangulation.

Then, the edges detected by the edge detection method are discretized as segments

E = {e = vivj | e lies on an edge}, where vivj represents a line segment between vi

and vj. Since large edges can essentially be covered using small consecutive edges,

we perform this discretization step by searching in a small neighborhood around

each vertex only. We also add additional vertices and segments to V and E , respec-

tively, by taking a mask around the sketched object and discretizing its boundary

(see Figure 3.5c). Also, in order to keep the size of the triangles approximately the

same, we avoid large triangles by adding vertices to V by uniformly sampling the

empty (white) regions inside the mask (see Figure 3.5c). Lastly, the constrained

Delaunay triangulation may give us triangles which are outside the mask, and can

lead to undesirable constraints by connecting unrelated parts of the sketched object.

Therefore, we prune the triangulation by removing these bad triangles (see Figure

3.5d). Let us call the triangle mesh obtained asM, and the set of its triangles as

T . Further, let us denote the warp function as W , and for any vertex vi, its warped

position be given by v′i = W (vi). The warp function minimizes the energy function

we describe next. Since, W is linear within each mesh triangle, we just need to

compute the values of v′i for all i ∈ [N].

Correspondence constraints. Keeping the same notations as before, let P

denote the set of pixels on S0 which have a correspondence in S1, and for each p ∈ P ,

we have a corresponding point q in S1. The warp should, therefore, satisfy

W (p) = q (3.8)

Let the triangle in which p is contained be (j, k, l) ∈ T and let α(p), β(p), γ(p) be

its barycentric coordinates w.r.t the triangle. The least-squares energy term for the

23

warp constraint is therefore:

Ep(W) =
∑
p∈P
‖(α(p)v′j, β(p)v′k, γ(p)v′l)− q‖2 (3.9)

If we also have access to a confidence score for each correspondence c(p) ∈ (0, 1],

then we can use this as a way to produce a weighted sum of energies for each match

Ep(W) =
∑
p∈P

c(p)‖(α(p)v′j, β(p)v′k, γ(p)v′l)− q‖2 (3.10)

(a) Sketch (b) Mask

(c) Sampling (d) Triangulation

Figure 3.5: Generating a constrained Delaunay triangulation for shape preserving
warp. a) The input sketch, b) input mask, c) sampled points: junctions and contours
(red), mask border (blue), and uniform internal samples (green), and d) triangula-
tion generated with good triangles (blue) and bad triangles (cyan). Observe how
sketch contours are traced by triangulation edges.

24

Note that the matching schemes we discussed, namely, shape context matching

and progressive graph matching, provide a confidence score for each match. For

manual matching, each match is assigned a constant score of 1.

Triangle shape constraints. Consider a mesh triangle t = (j, k, l) ∈ T and

attach a local orthogonal frame to it: {vk − vj, R90(vk − vj)}, where R90 is a

counterclockwise rotation by 90 degrees. Assume that vj is the origin of the frame.

Now, in the frame, vk is simply (1, 0) and let vi = (a, b). To preserve the shape of

this triangle, we need to ensure that the transformation it goes through is as close

as possible to a similarity transformation. Thus, we try to ensure that the local

frame remains orthogonal and the coordinates of the vertices remain the same. The

energy to express this constraint is

Es(W) =
∑
t∈T

∥∥∥∥∥v′l −
(

a

‖vk − vj‖
(v′k − v′j) + b

‖vk − vj‖
(
v′k − v′j)

))∥∥∥∥∥
2

(3.11)

where

a = (vl − vj)T (vk − vj)/‖vk − vj‖ (3.12)

b = (vl − vj)TR90(vk − vj)/‖vk − vj‖ (3.13)

Contour shape constraints. Recall that the segments E represent the con-

tours (and the mask border). To preserve the shape of the contours, we add an

additional constraint requiring the contours to undergo a locally shape preserving

transformation. This is another smoothness term, and is similar in spirit to Es, but

is defined on a contour, instead of a continuous 2D domain. Consider the set of

pairs of segments which share a single vertex, {(Ei, Ej) ∈ E × E | |Ei ∪Ej| = 3}. If

Ei ∪ Ej = {v0,v1,v2} and Ei ∩ Ej = v1, let us denote (v0,v1,v2) as e. Borrowing

terminology from [CSD11], we call such a sequence representing two consecutive

edge segments as an edgelet. A similarity (shape preserving) transformation of an

edgelet e would preserve the angle θ between the two edges, as well as the length

25

ratio ‖v0 − v1‖/‖v2 − v1‖. We can write this constraint as an energy term as

Eb(W) =
∑
e∈Ẽ

∥∥∥∥∥(v′0 − v′1)− ‖v0 − v1‖
‖v2 − v1‖

Rθ(v′2 − v′1)
∥∥∥∥∥

2

(3.14)

where Ẽ is the set of edgelets, and Rθ is a counterclockwise rotation by θ.

Energy minimization. The total warp energy is taken to be the total sum of

all the three constraint energies.

E(W) = wpEp + wsEs + wbEb (3.15)

The values of these coefficients are given later, when we describe the experiments

in chapter 4. Since, all the energy terms are in terms of squared residuals, and

the system of equations is overdetermined (that is, there are more equations than

unknowns), this is a standard least-squares optimization problem. We use the QR

decomposition to solve the system. In practice, we just use the MATLAB program-

ming language’s ‘\’ operator [The], and it automatically chooses the QR decompo-

sition method for solving the system.

In-between warps and extrapolation. If, instead of warping S0 completely

towards S1, we just need to warp it halfway, or in general, warp it α ∈ [0, 1] way

towards S1, we just take α factor of the motion vectors for all v ∈ V . That is,

Wα(S0) = αW (S0) (3.16)

Observe that W (·) ≡ W1(·). Notice that this assumes that the points follow a linear

path while being warped. The other method will be to first move the correspon-

dences to their positions at time t = α (say, S0 is at time t = 0, and S1 is at t = 1),

and then compute the warp. But, this approach is more costly, and doesn’t ensure

that the warp is temporally coherent.

In a similar fashion, we can have α < 0 or α > 1, and keep wα(S0) = αW (S0),

and allow for extrapolation.

26

(a) Original image (b) Structured forests edge
detector [DZ13]

(c) Proposed detector

Figure 3.6: Edge detection: comparison of the proposed edge detection method
with state of the art natural image edge detection method. Inset: notice the double
edge detected in (b), in contrast to the single edges in (c).

3.3.4 Edge detection

Figure 3.6 gives a comparison of two edge detectors for sketches. The first one is

a state-of-the-art edge detector [DZ13] used for natural images. Notice the double

edges. The second one is an edge detector we designed based on the popular Canny

edge detector [Can86]. Though not as good as modern detectors like [DZ13], the

Canny edge detector is an efficient and useful edge detector. It uses the following

steps for edge detection

1. Remove noise by applying a small Gaussian filter on the image.

2. Find intensity gradients (magnitude and direction) of the image.

3. Apply non-maximum suppression on the intensity gradient magnitude image 1

in the principal gradient directions to thin edges, and to remove false edges.

4. Apply double threshold on edge response to find certain edges (called strong

edges) and potential edges (called weak edges).

5. Track edges by hysteresis: All weak edges connected to a strong edge are kept,

while the rest are removed.

Note that the intensity gradient of a natural image gives its contours, which is

precisely the information already contained in a sketch, albeit inverted in terms of

color. Therefore, we replace the usage of intensity gradient magnitude image in

1The intensity gradient magnitude image GI of a given image I is just an image having the
same size as I such that for all pixels p ∈ I, GI(p) = |G(I, p)|, where G(I, p) gives the intensity
gradient of I at pixel p.

27

step 3 with an inverted color image of the sketch. We keep the direction the same

as regular canny detector. The intuition is that if we consider a sketch S to be

equivalent to the intensity gradient magnitude image of a natural image Snat, then

the intensity gradient directions at a given pixel p in the Gaussian smoothed version

of S are the same as the directions of the Laplacian of Gaussian of Snat at p. The

Laplacian of Gaussian itself is used for edge detection and sharpening. Therefore, it

makes sense to not modify the intensity direction computation in the original Canny

detector. Let us call our edge detector as the modified Canny detector. For all our

experiments in this thesis, we use this edge detector only, unless stated otherwise.

3.4 Iterative match-warp

Till now, we considered matching and warping as independent processes. However,

it can be noted that both have the same goal of finding a dense matching between

the two sketches. While the matching step gives a sparse correspondence, warping

densifies it. We give an iterative framework of alternating match-warp steps to

produce a final warp. Firstly, we use edge detection and sampling, as described

in section 3.2.2, to generate a set of N points P = {p1, . . . ,pN} representing the

shape in S0. Given, the sketch S0, and a small set of correspondences manually

specified by the user, we first use the manual correspondences as an input to the

shape preserving warp algorithm. Then, we iteratively perform these two operations

for a constant number of iterations:

• Use shape context based matching on the set of warped verticesW (p), ∀p ∈ P

without any regularization, as described in Section 3.2.2, to get a set of sparse

correspondences along with their confidence scores, and

• Feed these correspondences and their confidence scores, along with the manual

correspondences, to the shape preserving warp.

A more formal description is given in Algorithm 1. All but one function used in

Algorithm 1 have been described earlier in the text. We describe the one remain-

ing function, WarpedPositions(P ,M,M′). For all points p ∈ P , the function

28

returns their coordinates in the warped meshM′ having the same connectivity list

asM. This is done by simply taking the position of the point p inM; given by a

pair (t, B), where t ∈ T , and B = (α, β, γ) is the barycentric coordinate of p in t;

and finding the coordinate corresponding to the same position inM′.

In our experiments, this strategy gives the best results. Detailed compar-

isons are outlined in Chapter 4. Note that it is also easy to specify occlusions or

missing parts in this algorithm. Suppose that some region of S0 is occluded in S1,

or is a part of the shape depicted by S0 which is absent in S1. Then, the user can

just specify an occlusion mask to specify all such regions. While sampling for P , we

only sample points which lie outside the occlusion mask. Note that while sampling

for V , we do not care about the mask, as we would like even the occluded regions

to warp in a shape preserving manner.

Algorithm 1 IterativeMatchWarp
1: function IterWarp(S, M0, P , Q) . M0 is the set of manual matches
2: SE ← DetectEdges(S) . SE, a binary image, is the edgemap of S
3: V ← SampleEdgePoints(SE)
4: E ← EdgeSegments(SE,V)
5: M← CDT(V , E) . Constrained Delaunay Triangulation
6: Ẽ ← Edgelets(V , E)
7: M0 ← ShapePreservingWarp((M0, (1, 1, . . . |M0| times)),M, Ẽ)
8: P0 ←WarpedPositions(P ,M,M0)
9: i← 1

10: while i < numIter do
11: (Mi, C)← ShapeContextMatching(P i−1,Q)
12: M′i ← (Mi, C) ∪ (M0, (1, 1, . . . |M0| times))
13: Mi ← ShapePreservingWarp(M′i ,M, Ẽ)
14: P i ←WarpedPositions(P ,M,Mi)
15: i← i+ 1

3.5 Rendering

Notice that we have obtained a warp from S0 to S1 in the form of a warping function

W which gives the warped position for every pixel of S0. However, in order to create

the warped image S01, we need a mapping from every pixel of S01 to some pixel in

S0. In technical terms, what we have obtained is known as a forward mapping but

29

(a) (b)

Figure 3.7: The forward mapping problem. Image (b) is generated by rotating
(a)2 by 45° and the colors of all pixels in (a) are forward mapped to pixels in (b).
Notice the holes present in the rotated image. This problem is solved using backward
mapping.

what we need is a backward mapping. Just solving for the forward mapping gives

us an image with holes in it. Figure 3.7 explains the problem. In this section, we

describe a method to solve for the backward mapping.

To reiterate, the problem we are trying to solve is: Given any pixel q of S01,

what is its color? One way to obtain this is via the warped triangulation. Since, the

warping does not effect the triangulation (connectivity list) but only the positions of

the mesh vertices, we can find the triangle3 t containing q along with the barycentric

coordinates of q w.r.t this triangle, and locate the color of the pixel p having the

same barycentric coordinates in t. This is precisely what we do in the function

WarpedPositions() in Algorithm 1. But this is a costly operation, and is not

feasible to perform for more than a few hundred pixels (while a typical image is

105-106 pixels or more). Fortunately, there is a very simple and practical way to
2Photograph of La Tête au Carré (The Square Head), Promenade des Arts, Nice, France.

© Rahul Arora.
3Actually, the point q can be in multiple triangles since there is no explicit constraint to

prevent triangles from intersecting. However, we ignore this issue and take the first triangle (in
any arbitrary ordering) which contains q.

30

avoid this problem: We use OpenGL to render the warped image. The image S0

is used as a texture for rendering the warped mesh, while using the corresponding

source mesh as the texture coordinates. Thus, for any vertex vi = (xi, yi) ∈ V ,

the texture coordinate of its warped position v′i is (xi, yi), and it therefore picks up

the color at (xi, yi) in S0. OpenGL interpolates the texture coordinates inside the

triangles to find the color of each pixel, thereby completing the backward mapping.

Now that we know how to get warped images, we just need to know how to

morph them together. For this purpose, we use simple alpha blending. Consider

the problem of blending together the warped versions of S0 and S1. Let the warp

function warping S0 towards S1 completely be W 01, and that warping S1 onto S0

be W 10. Recall that we want to produce the in-between images for α ∈ [0, 1]. If we

know the in-between warps W 01
α (S0) and W 10

1−α(S1), we can compute the in-between

image Sα as

Sα = (1− α)W 01
α (S0) + αW 10

1−α(S1) (3.17)

In general, given n images S1, . . . ,Sn, the warp functions between them, W ij ∀1 ≤

i, j ≤ n4, and a n-vector of positive real numbers ∆ = (α1, . . . , αn), we can generate

an in-between image S∆ as

W
i
∆(p) =

n∑
j=1

αjW
ij(p) (3.18)

S i,∆ = W
i
∆(Si) (3.19)

S∆ =
n∑
i=1

αiS i,∆ (3.20)

If we set n = 2 and ∆ = (1 − α, α), then the above set of equations reduces to

equation 3.17.

Note that we must be able to add various W ij to get W i. This means that

all the warp functions defined on any one image should be compatible with each

other. Since our warps W ij are defined in terms of vertices of the triangulation

4For any i, the warp function W ii just maps the image to itself, that is, ∀p, W ii(p) = (p), the
identity warp

31

on Si, we need to make sure that the triangle mesh remains the same when we

compute the warps W ij, 1 ≤ j ≤ n, which can easily be done by pre-computing the

triangulation once and using it for computing all the warps. For the implementation

of the blending function, we write a shader using the OpenGL Shading Language

(GLSL). See Figure 4.3 for an example using three sketches.

Chapter 4

Experiments, Results and

Applications

We now present results we obtained using our interpolation pipeline. In order to sup-

port our choice of components, we provide comparisons with various other choices,

and describe how each option affects the final outcome. We also go through our

choice of parameters, described in chapter 3, and motivate the choice of their values

on the basis of interpolation results. Then, we compare our method with state of

the art image matching algorithm. Finally, we present an application of our method

for exploration of design space of ideation sketches.

All the experiments have been carried out on a standard machine with a 2.4 GHz

clock Intel Core-i5 CPU including an integrated Intel HD Graphics 3000 graphics

processor, 6 GB of memory, and an nVidia Geforce GT 525M GPU. The dataset

for the experiments has been created by redrawing sketches picked up from various

sources on the web. The redrawing was done in order to remove the shadows and

hatching normally present in sketches on the web. However, all the parts of the

sketches were drawn, and no contours or details were added or deleted. See Appendix

A for details.

32

33

4.1 Results

Figure 4.1 presents some of the results of our experiments on morphing between two

images. Figure 4.2 presents the same results while showing only the first sketch being

warped, without blending with the second. For all of these pairs of sketches, we begin

with 5 or 6 correspondences provided by the user, and then run the iterative match-

warp algorithm. Recall that the iterated match-warp approach uses shape context

as the data constraint for sparse matching, and shape-preserving warp energy as the

smoothness constraint (Algorithm 1). Note how our method attempts to preserves

the shape of the objects being warped as much as possible. Except in regions of

very sharp distortions in the motion field due to the correspondences, our method

preserves contour shape well, resulting in smooth curves in the transitional sketches.

Figure 4.3 shows the generalization of our algorithm to multiple images. Although

the warped images are not perfectly aligned, the in-between sketches look plausible,

and give a good idea of how a sketch of an in-between shape/viewpoint should look

like. Our algorithm also allows for extrapolation. We give some extrapolation results

in figure 4.4.

We also provide an example (figure 4.5) using an occlusion mask along with

a comparison of results achieved when no occlusion information is provided. An

occlusion mask over a sketch identifies parts which are not present in the other

sketch, and should therefore be ignored by the matching algorithm. Notice how the

occlusion mask results in the dual benefits of maintaining the shape of the occluded

regions better, while also resulting in better alignment of the overall sketches due

to better matching produced as a result of decreased confusion for the matching

algorithm. The occlusion mask is quick and easy to create using common image

manipulation programs such as GIMP or Adobe® Photoshop, and can be used to

produce higher quality results when the user desires it.

Figure 4.6 shows the effect of changing the number of iterations of the iterative

max-warp algorithm on the quality of the warp produced. Notice how the alignment

changes dramatically from the first matching (using manual matches only) to 2 it-

34

Figure 4.1: Morphing images warped using iterated match-warp algorithm. From
column 1 to 5: α = 0 (source sketch), 0.25, 0.5, 0.75, and 1 (target sketch). Red
dots on the source and target sketches indicate correspondences provided by the
user.

35

Figure 4.2: Warping using iterated match-warp algorithm. Column 1: Original
sketch (α = 0). Columns 2 to 5: α = 0.25, 0.5, 0.75, and 1 (target sketch). Notice
how the contour shape is preserved in most of the regions. Red dots shows points
matched to the target sketch by the user.

36

Figure 4.3: Morphing multiple images. Columns 1 to 3: Input images. Column 4:
Morphed image at ∆ = (1/3, 1/3, 1/3).

Figure 4.4: Extrapolating sketch warps. Columns 1 to 3: source sketch at α = 0,
α = −0.25, and α = 1.25. Column 4: target sketch.

37

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Effect of using an occlusion mask. Clockwise from top-left: a) Source
sketch and b) its occlusion mask, c) target image and d) its occlusion mask, warped
target sketch at α = 1 e) when occlusion masks are used vs. f) when not, and, morph
between the two sketches at α = 0.5 g) with and h) without using occlusion masks.
Notice the improved alignment and shape preservation when occlusion masks are
taken into consideration by the algorithm.

38

Figure 4.6: Results using various values of numIter. Column 1: Source mesh,
column 5: target mesh, columns 2 to 4: warped mesh at α = 1 using 0 iterations, 2
iterations, and 5 iterations.

erations. In general, we observed that most of the sketch alignment is done within

the first two iterations, and further iterations provide diminishing returns. There-

fore, we set the number of iterations to a slightly conservative value of 4, although

changing it to any value between 2 − 6 does not have any significant effect on the

results.

We set the other parameters of the shape preserving warp, the energy coefficients

wp, ws and wb to 5, 2 and 10, respectively. Figure 4.7 shows the results when wp is

set to 1, 5 or 10. We can note that while a small value of wp = 1 results in poor

alignment, since the correspondences do not count for much, keeping too high a value

of wp = 10 doesn’t allow shape to be preserved and results in local discontinuities in

the motion field. We do not show results for varying the value of ws vis-à-vis wb, but

the value of wb is kept much higher as compared to ws because we do not, in general,

want the triangle shape to be preserved too much to allow for easy expansion or

contraction in regions where there are no contours, and focus the shape preserving

energy on the contours.

4.1.1 Choice of components

Now, we present some results using the components we discussed in chapter 3 but

didn’t employ as the final option, and contrast the results obtained using those

components with our final choice, i.e., iterative match-warp. Figure 4.8 lists some

results using these approaches:

39

Figure 4.7: Results using various values of wp. Column 1: Source mesh, column
5: target mesh, columns 2 to 4: warped mesh at α = 1 using wp = 1, wp = 5, and
wp = 10. Notice how the middle column shows good alignment without too much
shape distortion. For all these results, ws = 2 and wb = 10.

• When the warp is performed with a naive approach using only 5-6 sparse man-

ual correspondences, and using linear interpolation to create a dense backward

mapping. Notice how the alignment with the target sketch is really poor, albeit

the shape is preserved since no significant warping happens.

• Iterative algorithm using shape contexts for matching and thin plate splines

for regularization as described in [BMP02]. This approach preserves shape,

but is unable to align the sketches well in regions of large movement.

• Progressive graph matching to extend the initial list of 5-6 manual correspon-

dences followed by a single iteration of shape preserving warp1. The major

disadvantage of this approach is the heavy local distortion caused by bad

matches.

4.1.2 Comparison with other work

We compare our results with state of the art image morphing algorithm presented in

[Lia+14] in figure 4.9. The figure also describes results using an approach which uses

a large number of user correspondences (16-25) followed by uses shape preserving

warp. Due to the large number of user correspondences provided, we treat these

results as the reference warp/morph. Comparison with this reference shows that

the warps generated by our approach are better aligned to the target sketches, and
1Since the shape preserving warp runs only once in this approach, to get proper alignment, we

set (wp, ws, wb) = (10, 1, 10).

40

Figure 4.8: Results using component choices other than iterative match-warp.
From left to right: source sketch; warped sketch at α = 1 using very sparse manual
matches and linear interpolation only, shape contexts with TPS, and, progressive
graph matching; and target sketch.

41

Figure 4.9: Comparison between proposed method and state of the art solution.
Columns 1 to 5: source sketch, warped sketch at α = 1 using [Lia+14], reference
warps, using our approach, and target sketch.

preserve shape better. Also, the existing method produces wavy contours. This is

because our approach is better suited to the sketchy domain, extracting and using

important sketch information of contours, and preserving their shapes. Moreover,

our approach runs much faster.

4.1.3 Analysis and failure cases

Our results for ideation sketches of varied sketch styles and object domains shows

that the method serves its intended purpose well. The comparison with state of the

art image morphing algorithm also proves that the current natural image morphing

and interpolation methods are not directly applicable for sketches, and the adap-

42

Figure 4.10: Failure due to self-intersecting projections. From left to right: source
sketch, source sketch warped to α = 1, and target sketch.

tations we make improve the results. A strength of our method is that we do not

require the three dimensional shape of the object being depicted, due to the inherent

projection inaccuracies in ideation sketches. Another key advantage is that we need

little user effort, which is an important constraint at the early stage of design we

target.

However, due to the fully two-dimensional nature and little user interaction,

the proposed solution fails for certain cases. This may occur because the two-

dimensional motion field cannot possibly capture the correct three dimensional

motion-field due to large self intersections in the sketched projection, as in figure

4.10, or because the shape difference between the objects is too high, as exemplified

by figure 4.11.

We now move on to the application we developed for designers to explore the

design space of ideation sketches, before returning to the failure cases and discussing

possible solutions in chapter 5.

4.2 Application: Design space exploration

We describe a tool which works on top of the proposed sketch interpolation algorithm

to allow designers to explore the design space induced by their ideation sketches.

43

Figure 4.11: Failure due to large shape difference. From left to right: source
sketch, source sketch warped to α = 1, and target sketch.

The tool can help designers understand possible variations which can be generated

from the existing sketches by generating animations visualizing inbetween sketches

and generating the inbetween sketches themselves, which the designer can choose to

later improve or modify.

Figure 4.12 gives a description of the user interaction with the tool. For two

sketches, the tool provides the designer with an option to interpolate (or extrapolate)

between them by choosing a point on a line representing the alpha values with one

of the input sketches at α = 0 and the other at α = 1. For multiple (more than

two) sketches, the sketches are mapped to vertices of a planar Delaunay mesh. The

plane in which the triangle mesh lies is our idea of the design space induced by the

input sketches. The user can choose any location on the plane of this mesh (may or

may not be inside the mesh boundaries) and can look at the sketch generated at this

point. The user can also choose any two points on the plane, and the tool generates

an animation by iterating through the sketches represented by the segment joining

these two points. In case of two sketches, this animation can be generated between

two points on the line drawn through points representing the input sketches.

The user can also make a choice on which of the input sketches should be morphed

in order to produce the interpolated sketch. Note that by choosing only one sketch,

this reduces to just looking at the warped version of that sketch. Another option

44

(a) Two sketches mapped to
a line segment

(b) Multiple sketches
mapped to vertices of a
regular polygon

(c) Multiple sketches
mapped according to motion
fields

Figure 4.12: Mapping sketches into the plane representing the design space. The
black dots are input sketches, and the red dot is a point in the design space currently
being explored by the user.

provided to the user is with respect to how the sketches are arranged (see figure

4.12). One way is to arrange them as a regular polygon: given n sketches, they are

mapped to vertices of a n-vertex regular polygon in the design space. This is useful

when the sketches differ just in terms of shape and not viewpoint, since there is

no physical prior on how they should be arranged in a plane. The other method is

to place the sketches in the design space based on the motion fields between them.

This is useful for sketches differing in the projection viewpoint (and, possibly, in

shape). Arranging sketches based on their motion fields gives a rough idea of the

relative three dimensional rotation between the sketches, and can guide the user in

generating new viewpoints (see figure 4.13).

For two sketches, both the arrangements are the same. Therefore, we focus on

n > 3. We present a least-square optimization to solve for the optimum positions

of the sketches in the design space, given their relative motion fields.

Given n > 2 sketches S1, . . . , Sn, and their relative motion fields Fij, ∀ 1 ≤

i, j ≤ n, we first compute the mean motion field between all sketch pairs. For any

given pair (i, j) (where 1 ≤ i, j ≤ n), the mean motion field F̄ij is given by taking

the mean of motion vectors of all the vertices in the triangulation used to warp

sketch Si to Sj. Let us also denote the component of the mean motion field in the

x direction as F̄xij, and that in the y direction as F̄yij. Now, for all pairs (i, j) such

45

Figure 4.13: Mapping sketches to design space according to relative motion fields.
The top row shows the input sketches, while the red dot in bottom row shows the
position of each sketch in the plane. The average motion field direction can be
inferred by looking at the parts of the sketches. For example, while moving from
column 2 to 3, a visual inspection hints that the motion field is towards the top-right,
which is what the mapping suggests as well. Other pairs can be similarly observed.

that 1 ≤ i < j ≤ n, define

fdir(i, j) = 1
2
(
Fdirij + (−Fdirji)

)
∀dir ∈ {x, y}

Now, let (xi, yi) be the position of Si in the design space. Assume that the point

(x1, y1) is the origin, that is, x1 = y1 = 0. We solve for (xi, yi) ∀ 1 ≤ i ≤ n by

setting up a least squares optimization over the following equations

xj = fx(1, j) ∀ 2 ≤ j ≤ n (4.1)

yj = f y(1, j) ∀ 2 ≤ j ≤ n (4.2)

xj − xi = fx(i, j) ∀ 2 ≤ i < j ≤ n (4.3)

yj − yi = f y(i, j) ∀ 2 ≤ i < j ≤ n (4.4)

Since we have n(n− 1) equations and 2(n− 1) unknowns, we can find the globally

best solution using the least squares method for all values of n ≥ 2. After finding this

solution, we normalize the values of (xi, yi) to restrict to the unit square between

(0, 0) and (1, 1). See figure 4.13 for an example of how the solver arranges the

sketches in the design space.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have presented a novel algorithm for interpolation between ideation

sketches depicting a functional class of objects using different shapes and projection

viewpoints. The algorithm closely follows a typical image morphing pipeline, but

all the components are adapted to suit the input domain of rough sketches. The

main visual criteria we used to judge the quality of a warp or morph is the align-

ment between sketches being warped, and the preservation of shape of the warped

images, which makes the interpolated contours look plausible. The proposed ap-

proach performs better than all other approaches studied in the paper, as well as

the state of the art image morphing method. We also described extensions of the

main algorithm to handle extrapolation, and occlusions/disocclusions.

Further, we built a tool to help designers explore the various possible variations

generated from a small set of ideation sketches of a single concept. The tool allows

the designer to mix and match between the visual and geometric properties of the

input sketches. The main user interface aspect of the tool is an embedding of the

sketches as points on a plane. The tool also allows the embedding to be based on

the warp motion field between the sketches, and relative positions of the sketches in

the plane identify with the 3D viewpoint rotations between them.

46

47

5.2 Future work

An immediate future work is to improve the rendering by using solutions which

work better than simple alpha blending. As is evident from the results shown in

figures 4.1 and 4.3, alpha blending can result in reduced darkness when the alpha

values are far from the extremes. An idea is to generate multiple versions of each

sketch using a grayscale thinning operation, and then warping the required version

according to the blending alpha value of the sketch. This is suitable for sketches

since thinner lines represent reduced importance of a contour [Hla14]. Another

improvement is on alignment: once the warps have been generated, the novel sketch

that the user explores can be further refined by using iterative closest point (ICP)

approach to iteratively align the warped edgemaps of the two sketches better. While

this might result in loss of coherence along the design space, the generated sketches

can potentially align much better. The edge detector we use does not work with

sketches with shading, hatching and shadows. A possible improvement to the whole

pipeline is to pre-filter the sketches using, for example, the rolling guidance filter

described in [Zha+14], before the edge detection step. Another improvement will be

to have a good measure of alignment of the sketches, and run the iterative warp until

the alignment threshold has been crossed, instead of a fixed number of iterations.

In the longer term, we would like the method to be able to handle more general

cases, especially the self-intersection failure cases as shown in figure 4.10. A possible

modification is to run the algorithm separately for different layers of the sketches.

For example, in figure 4.10, the right handle of the chairs can be treated as the top

layer, and the rest of the parts as the bottom layer. This would enable the warp to

model three-dimensional transformations which project to a two-dimensional trans-

formation with significant discontinuities by separating out the 3D transformation

into multiple 2D transformations. We would also like to improve user experience

by reducing the number of correspondences she has to provide. One way to do

this is to ask the user for correspondences between only a few pairs of sketches and

then enforce cyclic consistency constraint on the matches to deduce correspondences

48

between the other pairs.

The ultimate goal is to use the matches generated and the warping transfor-

mations estimated to recover the 3D shape of the depicted object. This is a hard

problem because of the inherent inaccuracies in ideation sketches as discussed in the

text. But, one can hope to recover the general 3D shape represented by the sketches

in order to aid the designer in the 3D modeling step, thereby reducing repeated

artist effort.

Appendix A

Redrawing of Sketches

Since our method cannot work with sketches which include hatching or shadows, we

have redrawn sketches originally drawn by professional sketch artists/designers by

retracing the contours. We have tried to stay as honest as possible to the original

drawings, taking care not to introduce or delete any contours. See figures A.1 and

A.3 for a side-by-side comparison of all sketches in our dataset, along with the

originals. Some sketches (figure A.2) were drawn by tracing edges of rendered 3D

models taken from SketchUp 3D WareHouse [Tri].

Sketch sources:

• © Mike Serafin. http://www.memikeserafin.com/110810/970511/work/sketchbook.

(All clothes iron images)

• © Spencer Nugent. Sketch-A-Day 286. (All shaver and sewing machine im-

ages)

• © Benjamin R. Lloyd. http://www.benjaminrlloyd.com/sketchbook. (All

rally truck and motorcycle images, and cars 6, 7 and 8)

• All chair 3D models taken from SketchUp 3D Warehouse [Tri].

• © http://dazza-mate.deviantart.com. (Car 1 and 5)

• Mercedes Benz 2014 S-Class Coupe. Press release. (Car 2)

• © TJ Vaninetti. https://thepureautostudio.wordpress.com/. (Car 3)

• Audi Quattro concept car. Press release. (Car 4)

49

http://www.memikeserafin.com/110810/970511/work/sketchbook
http://www.sketch-a-day.com/posts/sketch-a-day-219-sewing-machines/
http://www.benjaminrlloyd.com/sketchbook
http://dazza-mate.deviantart.com
https://thepureautostudio.wordpress.com/

50

Figure A.1: Original sketches with their redrawn versions.

Figure A.2: Sketches drawn using 2D projections of stock 3D models.

51

Figure A.3: Original sketches with their redrawn versions.

Bibliography

[AD96] H. Araujo and J.M. Dias. “An introduction to the log-polar mapping
[image sampling]”. In: Cybernetic Vision, 1996. Proceedings., Second
Workshop on. Dec. 1996, pp. 139–144. doi: 10.1109/CYBVIS.1996.
629454.

[Bar07] Guido Bartoli. “Image Registration Techniques: A Comprehensive Sur-
vey”. In: (2007).

[BBS08] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. “ILoveSketch:
As-natural-as-possible Sketching System for Creating 3D Curve Mod-
els”. In: Proceedings of the 21st Annual ACM Symposium on User In-
terface Software and Technology. UIST ’08. Monterey, CA, USA: ACM,
2008, pp. 151–160. isbn: 978-1-59593-975-3. doi: 10.1145/1449715.
1449740. url: http://doi.acm.org/10.1145/1449715.1449740.

[BC13] Alexandra Bonnici and Kenneth Camilleri. “A Circle-based Vectoriza-
tion Algorithm for Drawings with Shadows”. In: Proceedings of the In-
ternational Symposium on Sketch-Based Interfaces and Modeling. SBIM
’13. Anaheim, California: ACM, 2013, pp. 69–77. isbn: 978-1-4503-2205-
8. doi: 10.1145/2487381.2487386. url: http://doi.acm.org/10.
1145/2487381.2487386.

[BD03] Zafer Bilda and Halime Demirkan. “An insight on designers’ sketching
activities in traditional versus digital media”. In: Design Studies 24.1
(2003), pp. 27 –50. issn: 0142-694X. doi: http://dx.doi.org/10.
1016/S0142-694X(02)00032-7. url: http://www.sciencedirect.
com/science/article/pii/S0142694X02000327.

[BMP02] S. Belongie, J. Malik, and J. Puzicha. “Shape matching and object
recognition using shape contexts”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 24.4 (Apr. 2002), pp. 509–522. issn:
0162-8828. doi: 10.1109/34.993558.

[BW05] Gary Robert Bertoline and Eric N Wiebe. Fundamentals of Graphics
Communication (McGraw-Hill Graphics). McGraw-Hill Science/Engineering/Math,
2005. isbn: 0073136069.

[Can86] J Canny. “A Computational Approach to Edge Detection”. In: IEEE
Trans. Pattern Anal. Mach. Intell. 8.6 (June 1986), pp. 679–698. issn:
0162-8828. doi: 10.1109/TPAMI.1986.4767851. url: http://dx.doi.
org/10.1109/TPAMI.1986.4767851.

52

http://dx.doi.org/10.1109/CYBVIS.1996.629454
http://dx.doi.org/10.1109/CYBVIS.1996.629454
http://dx.doi.org/10.1145/1449715.1449740
http://dx.doi.org/10.1145/1449715.1449740
http://doi.acm.org/10.1145/1449715.1449740
http://dx.doi.org/10.1145/2487381.2487386
http://doi.acm.org/10.1145/2487381.2487386
http://doi.acm.org/10.1145/2487381.2487386
http://dx.doi.org/http://dx.doi.org/10.1016/S0142-694X(02)00032-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0142-694X(02)00032-7
http://www.sciencedirect.com/science/article/pii/S0142694X02000327
http://www.sciencedirect.com/science/article/pii/S0142694X02000327
http://dx.doi.org/10.1109/34.993558
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851

BIBLIOGRAPHY 53

[Che87] L. P. Chew. “Constrained Delaunay Triangulations”. In: Proceedings of
the Third Annual Symposium on Computational Geometry. SCG ’87.
Waterloo, Ontario, Canada: ACM, 1987, pp. 215–222. isbn: 0-89791-
231-4. doi: 10.1145/41958.41981. url: http://doi.acm.org/10.
1145/41958.41981.

[CLL10] Minsu Cho, Jungmin Lee, and KyoungMu Lee. “Reweighted Random
Walks for Graph Matching”. English. In: Computer Vision – ECCV
2010. Ed. by Kostas Daniilidis, Petros Maragos, and Nikos Paragios.
Vol. 6315. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2010, pp. 492–505. isbn: 978-3-642-15554-3. doi: 10.1007/978-
3-642-15555-0_36. url: http://dx.doi.org/10.1007/978-3-642-
15555-0_36.

[CSC14] Che-Han Chang, Y. Sato, and Yung-Yu Chuang. “Shape-Preserving
Half-Projective Warps for Image Stitching”. In: Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on. June 2014,
pp. 3254–3261. doi: 10.1109/CVPR.2014.422.

[CSD11] Gaurav Chaurasia, Olga Sorkine, and George Drettakis. “Silhouette-
aware Warping for Image-based Rendering”. In: Proceedings of the Twenty-
second Eurographics Conference on Rendering. EGSR ’11. Prague, Czech
Republic: Eurographics Association, 2011, pp. 1223–1232. doi: 10 .
1111/j .1467- 8659.2011. 01981.x. url: http:/ /dx.doi. org/
10.1111/j.1467-8659.2011.01981.x.

[CW93] Shenchang Eric Chen and Lance Williams. “View Interpolation for Im-
age Synthesis”. In: Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’93. Anaheim,
CA: ACM, 1993, pp. 279–288. isbn: 0-89791-601-8. doi: 10 . 1145 /
166117.166153. url: http://doi.acm.org/10.1145/166117.166153.

[D.85] Sturman D. “Interactive keyframe animation of 3D articulated models”.
In: Course notes, SIGGRAPH Course Number 10, Computer Anima-
tion: 3D Motion Specification and Control (July 1985), pp. 17–25.

[DB06] M. Donoser and H. Bischof. “Efficient Maximally Stable Extremal Re-
gion (MSER) Tracking”. In: Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on. Vol. 1. June 2006, pp. 553–
560. doi: 10.1109/CVPR.2006.107.

[Duc77] Jean Duchon. “Splines minimizing rotation-invariant semi-norms in Sobolev
spaces”. English. In: Constructive Theory of Functions of Several Vari-
ables. Ed. by Walter Schempp and Karl Zeller. Vol. 571. Lecture Notes
in Mathematics. Springer Berlin Heidelberg, 1977, pp. 85–100. isbn:
978-3-540-08069-5. doi: 10.1007/BFb0086566. url: http://dx.doi.
org/10.1007/BFb0086566.

[DZ13] Piotr Dollár and C. Lawrence Zitnick. “Structured Forests for Fast Edge
Detection”. In: Proceedings of the 2013 IEEE International Conference
on Computer Vision. ICCV ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 1841–1848. isbn: 978-1-4799-2840-8. doi: 10.1109/
ICCV.2013.231. url: http://dx.doi.org/10.1109/ICCV.2013.231.

http://dx.doi.org/10.1145/41958.41981
http://doi.acm.org/10.1145/41958.41981
http://doi.acm.org/10.1145/41958.41981
http://dx.doi.org/10.1007/978-3-642-15555-0_36
http://dx.doi.org/10.1007/978-3-642-15555-0_36
http://dx.doi.org/10.1007/978-3-642-15555-0_36
http://dx.doi.org/10.1007/978-3-642-15555-0_36
http://dx.doi.org/10.1109/CVPR.2014.422
http://dx.doi.org/10.1111/j.1467-8659.2011.01981.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01981.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01981.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01981.x
http://dx.doi.org/10.1145/166117.166153
http://dx.doi.org/10.1145/166117.166153
http://doi.acm.org/10.1145/166117.166153
http://dx.doi.org/10.1109/CVPR.2006.107
http://dx.doi.org/10.1007/BFb0086566
http://dx.doi.org/10.1007/BFb0086566
http://dx.doi.org/10.1007/BFb0086566
http://dx.doi.org/10.1109/ICCV.2013.231
http://dx.doi.org/10.1109/ICCV.2013.231
http://dx.doi.org/10.1109/ICCV.2013.231

54 BIBLIOGRAPHY

[ES11] K. Eissen and R. Steur. Sketching: The Basics. BIS, 2011. isbn: 9789063692537.
url: https://books.google.co.in/books?id=HoSlcQAACAAJ.

[GR96] Steven Gold and Anand Rangarajan. “A Graduated Assignment Al-
gorithm for Graph Matching”. In: IEEE Trans. Pattern Anal. Mach.
Intell. 18.4 (Apr. 1996), pp. 377–388. issn: 0162-8828. doi: 10.1109/
34.491619. url: http://dx.doi.org/10.1109/34.491619.

[Hla14] George Hlavács. The Exceptionally Simple Theory of Sketching: Easy to
Follow Tips and Tricks to Make your Sketches Look Beautiful Paperback
– June 3, 2014. BIS Publishers, 2014. isbn: 9063693346.

[Lee12] Kyoung Mu Lee. “Progressive Graph Matching: Making a Move of
Graphs via Probabilistic Voting”. In: Proceedings of the 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). CVPR
’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 398–405.
isbn: 978-1-4673-1226-4. url: http://dl.acm.org/citation.cfm?
id=2354409.2354847.

[LH96] Marc Levoy and Pat Hanrahan. “Light Field Rendering”. In: Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 31–
42. isbn: 0-89791-746-4. doi: 10.1145/237170.237199. url: http:
//doi.acm.org/10.1145/237170.237199.

[Lia+14] Jing Liao et al. “Automating Image Morphing Using Structural Similar-
ity on a Halfway Domain”. In: ACM Trans. Graph. 33.5 (Sept. 2014),
168:1–168:12. issn: 0730-0301. doi: 10 . 1145 / 2629494. url: http :
//doi.acm.org/10.1145/2629494.

[Liu+09] Feng Liu et al. “Content-preserving Warps for 3D Video Stabilization”.
In: ACM Trans. Graph. 28.3 (July 2009), 44:1–44:9. issn: 0730-0301.
doi: 10.1145/1531326.1531350. url: http://doi.acm.org/10.
1145/1531326.1531350.

[Low04] David G. Lowe. “Distinctive Image Features from Scale-Invariant Key-
points”. In: International Journal of Computer Vision 60 (2004), pp. 91–
110.

[Mah+09] Dhruv Mahajan et al. “Moving Gradients: A Path-based Method for
Plausible Image Interpolation”. In: ACM Trans. Graph. 28.3 (July 2009),
42:1–42:11. issn: 0730-0301. doi: 10.1145/1531326.1531348. url:
http://doi.acm.org/10.1145/1531326.1531348.

[MB95] Leonard McMillan and Gary Bishop. “Plenoptic Modeling: An Image-
based Rendering System”. In: Proceedings of the 22Nd Annual Confer-
ence on Computer Graphics and Interactive Techniques. SIGGRAPH
’95. New York, NY, USA: ACM, 1995, pp. 39–46. isbn: 0-89791-701-4.
doi: 10.1145/218380.218398. url: http://doi.acm.org/10.1145/
218380.218398.

[Mun57] James Munkres. ALGORITHMS FOR THE ASSIGNMENT AND TRANS-
PORTATION PROBLEMS. 1957.

https://books.google.co.in/books?id=HoSlcQAACAAJ
http://dx.doi.org/10.1109/34.491619
http://dx.doi.org/10.1109/34.491619
http://dx.doi.org/10.1109/34.491619
http://dl.acm.org/citation.cfm?id=2354409.2354847
http://dl.acm.org/citation.cfm?id=2354409.2354847
http://dx.doi.org/10.1145/237170.237199
http://doi.acm.org/10.1145/237170.237199
http://doi.acm.org/10.1145/237170.237199
http://dx.doi.org/10.1145/2629494
http://doi.acm.org/10.1145/2629494
http://doi.acm.org/10.1145/2629494
http://dx.doi.org/10.1145/1531326.1531350
http://doi.acm.org/10.1145/1531326.1531350
http://doi.acm.org/10.1145/1531326.1531350
http://dx.doi.org/10.1145/1531326.1531348
http://doi.acm.org/10.1145/1531326.1531348
http://dx.doi.org/10.1145/218380.218398
http://doi.acm.org/10.1145/218380.218398
http://doi.acm.org/10.1145/218380.218398

BIBLIOGRAPHY 55

[Nea+07] Andrew Nealen et al. “FiberMesh: Designing Freeform Surfaces with 3D
Curves”. In: ACM Trans. Graph. 26.3 (July 2007). issn: 0730-0301. doi:
10.1145/1276377.1276429. url: http://doi.acm.org/10.1145/
1276377.1276429.

[OK11] Gunay Orbay and Levent Burak Kara. “Beautification of Design Sketches
Using Trainable Stroke Clustering and Curve Fitting”. In: IEEE Trans-
actions on Visualization and Computer Graphics 17.5 (2011), pp. 694–
708. issn: 1077-2626. doi: http://doi.ieeecomputersociety.org/
10.1109/TVCG.2010.105.

[Ols+09] Luke Olsen et al. “Technical Section: Sketch-based Modeling: A Survey”.
In: Comput. Graph. 33.1 (Feb. 2009), pp. 85–103. issn: 0097-8493. doi:
10.1016/j.cag.2008.09.013. url: http://dx.doi.org/10.1016/j.
cag.2008.09.013.

[RID10] Alec Rivers, Takeo Igarashi, and Frédo Durand. “2.5D Cartoon Models”.
In: ACM Trans. Graph. 29.4 (July 2010), 59:1–59:7. issn: 0730-0301.
doi: 10.1145/1778765.1778796. url: http://doi.acm.org/10.
1145/1778765.1778796.

[SCL12] Yumin Suh, Minsu Cho, and Kyoung Mu Lee. “Graph Matching via
Sequential Monte Carlo”. In: Proceedings of the 12th European Con-
ference on Computer Vision - Volume Part III. ECCV’12. Florence,
Italy: Springer-Verlag, 2012, pp. 624–637. isbn: 978-3-642-33711-6. doi:
10.1007/978-3-642-33712-3_45. url: http://dx.doi.org/10.
1007/978-3-642-33712-3_45.

[SD96] Steven M. Seitz and Charles R. Dyer. “View Morphing”. In: Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 21–
30. isbn: 0-89791-746-4. doi: 10.1145/237170.237196. url: http:
//doi.acm.org/10.1145/237170.237196.

[Sha+12] Cloud Shao et al. “CrossShade: Shading Concept Sketches Using Cross-
Section Curves”. In: ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH 2012) 31.4 (2012). url: http://www.crossshade.
com.

[Sha+13] Tianjia Shao et al. “Interpreting Concept Sketches”. In: ACM Trans.
Graph. 32.4 (July 2013), 56:1–56:10. issn: 0730-0301. doi: 10.1145/
2461912.2462003. url: http://doi.acm.org/10.1145/2461912.
2462003.

[Shr+11] Abhinav Shrivastava et al. “Data-driven Visual Similarity for Cross-
domain Image Matching”. In: ACM Trans. Graph. 30.6 (Dec. 2011),
154:1–154:10. issn: 0730-0301. doi: 10.1145/2070781.2024188. url:
http://doi.acm.org/10.1145/2070781.2024188.

[SK00] Harry Shum and Sing B Kang. “Review of image-based rendering tech-
niques”. In: Visual Communications and Image Processing 2000. Inter-
national Society for Optics and Photonics. 2000, pp. 2–13.

http://dx.doi.org/10.1145/1276377.1276429
http://doi.acm.org/10.1145/1276377.1276429
http://doi.acm.org/10.1145/1276377.1276429
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.105
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.105
http://dx.doi.org/10.1016/j.cag.2008.09.013
http://dx.doi.org/10.1016/j.cag.2008.09.013
http://dx.doi.org/10.1016/j.cag.2008.09.013
http://dx.doi.org/10.1145/1778765.1778796
http://doi.acm.org/10.1145/1778765.1778796
http://doi.acm.org/10.1145/1778765.1778796
http://dx.doi.org/10.1007/978-3-642-33712-3_45
http://dx.doi.org/10.1007/978-3-642-33712-3_45
http://dx.doi.org/10.1007/978-3-642-33712-3_45
http://dx.doi.org/10.1145/237170.237196
http://doi.acm.org/10.1145/237170.237196
http://doi.acm.org/10.1145/237170.237196
http://www.crossshade.com
http://www.crossshade.com
http://dx.doi.org/10.1145/2461912.2462003
http://dx.doi.org/10.1145/2461912.2462003
http://doi.acm.org/10.1145/2461912.2462003
http://doi.acm.org/10.1145/2461912.2462003
http://dx.doi.org/10.1145/2070781.2024188
http://doi.acm.org/10.1145/2070781.2024188

56 BIBLIOGRAPHY

[Sok] Karina Sokolava. Basic Guidelines to Product Sketching. url: http:
/ / www . hongkiat . com / blog / basic - guidelines - to - product -
sketching/ (visited on 06/30/2015).

[TKR13] L. Torresani, V. Kolmogorov, and C. Rother. “A Dual Decomposition
Approach to Feature Correspondence”. In: Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 35.2 (Feb. 2013), pp. 259–
271. issn: 0162-8828. doi: 10.1109/TPAMI.2012.105.

[TN10] Yuandong Tian and S.G. Narasimhan. “A globally optimal data-driven
approach for image distortion estimation”. In: Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on. June 2010,
pp. 1277–1284. doi: 10.1109/CVPR.2010.5539822.

[TZY08] Zhuowen Tu, Songfeng Zheng, and Alan Yuille. “Shape matching and
registration by data-driven EM”. In: Computer Vision and Image Un-
derstanding 109.3 (2008), pp. 290–304.

[Xu+14] Baoxuan Xu et al. “True2Form: 3D Curve Networks from 2D Sketches
via Selective Regularization”. In: Transactions on Graphics (Proc. SIG-
GRAPH 2014) 33.4 (2014). doi: 2601097.2601128.

[Zha+09] Guo-Xin Zhang et al. “A Shape-Preserving Approach to Image Resiz-
ing”. In: Computer Graphics Forum 28.7 (2009), pp. 1897–1906.

[Zha+14] Qi Zhang et al. “Rolling Guidance Filter”. English. In: Computer Vision
– ECCV 2014. Ed. by David Fleet et al. Vol. 8691. Lecture Notes in
Computer Science. Springer International Publishing, 2014, pp. 815–
830. isbn: 978-3-319-10577-2. doi: 10.1007/978-3-319-10578-9_53.
url: http://dx.doi.org/10.1007/978-3-319-10578-9_53.

[The] The Mathworks, Inc. Documentation: Solve systems of linear equations
Ax = B for x. url: http://in.mathworks.com/help/matlab/ref/
mldivide.html (visited on 06/30/2015).

[Tri] Trimble Navigation Limited. 3D WareHouse. url: https://3dwarehouse.
sketchup.com/?hl=en (visited on 07/03/2015).

http://www.hongkiat.com/blog/basic-guidelines-to-product-sketching/
http://www.hongkiat.com/blog/basic-guidelines-to-product-sketching/
http://www.hongkiat.com/blog/basic-guidelines-to-product-sketching/
http://dx.doi.org/10.1109/TPAMI.2012.105
http://dx.doi.org/10.1109/CVPR.2010.5539822
http://dx.doi.org/2601097.2601128
http://dx.doi.org/10.1007/978-3-319-10578-9_53
http://dx.doi.org/10.1007/978-3-319-10578-9_53
http://in.mathworks.com/help/matlab/ref/mldivide.html
http://in.mathworks.com/help/matlab/ref/mldivide.html
https://3dwarehouse.sketchup.com/?hl=en
https://3dwarehouse.sketchup.com/?hl=en

	Abstract
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Sketch-based modeling and interpolation
	2.2 Image-based rendering and morphing
	2.3 Image matching

	3 Interpolation between Sketches
	3.1 Overview
	3.2 Matching
	3.2.1 Manual matching
	3.2.2 Shape context matching
	3.2.3 Regularization
	3.2.4 Graph matching

	3.3 Warping
	3.3.1 Linear interpolation using triangulation
	3.3.2 Thin plate splines
	3.3.3 Shape preserving warp
	3.3.4 Edge detection

	3.4 Iterative match-warp
	3.5 Rendering

	4 Experiments, Results and Applications
	4.1 Results
	4.1.1 Choice of components
	4.1.2 Comparison with other work
	4.1.3 Analysis and failure cases

	4.2 Application: Design space exploration

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future work

	A Redrawing of Sketches

